Computer Controlled
High Precision Resistance Decade
Model 1427

Application
In its function as temperature simulator the decade offers the choice of sensors like Pt100, Pt200, Pt500, Pt1000, Ni100 and Ni1000 in the range from -200 °C up to +850 °C. The temperature is entered via keyboard or data interface. The corresponding resistance appears at the output socket in two, three or four wire method.

Description
The resistance decade allows a direct choice of resistances between 1 Ω and 1.2 MΩ. Depending on the ohm value the resolution can be chosen up to 0.00001 Ω. The selected resistance can be picked up via two or four wire method. The LCD display informs about chosen resistance or temperature, sensor type and control status.

- Resistance range from 1.00000 Ω to 1.200000 MΩ
- Accuracy 0.005 %
- Temperature coefficient < 1 ppm/K
- Simulation of RTD (Pt, Ni) temperature sensors
- Simulation accuracy 0.02 °C
- 2, 3, 4 wire connection
- USB/RS232 (IEEE488/Ethernet optionally)
Order Information

High precision resistance decade with RS232
Model 1427-V100
High precision resistance decade with IEEE488
Model 1427-V200
Mounting set for 19"-3HE rack mounting
Model 2316-Z001
USB/RS232 converter
Model 9900-K361
Converter RS232 to Ethernet
Model 9900-K453

Option

Short/Open function
Model 1427-Vxxx-001

DAkkS Calibration Certificate

DAkkS Calibration Certificate for model 1427
Order Code 14DKD-1427

Technical Data

Resistance range: 1.000000 Ω ... 1.200000 MΩ
Resolution: 10 μΩ at 1 Ω
Temperature coefficient:
< 1 ppm/°C (1 Ω - 2000 Ω) four wire port
< 1 ppm/°C (100 Ω - 1.2 MΩ) two wire port
< 5 ppm/°C (2 kΩ - 10 kΩ) four wire port
Operating voltage: 120 VDC / 50 VAC
Total power dissipation: 0.3 W
Max. load: 0.3 W
Max. voltage: 50 V
Range Pt sensor temperature simulation: - 200 °C ... + 850 °C
Range Ni sensor temperature simulation: - 60 °C ... + 300 °C
Sensor models: Pt100 ... Pt1000, Ni10 ... Ni1000
Temperature scales: IPTS68, ITS90
Pt sensor standard: DIN (1,385), US (1,392)
Ni sensor standard: DIN 43760 (6180)
Connection: 2, 3, 4 wire
Remote control: RS232, optionally IEEE488
Response time in remote: 6 ms
Temperature range:
reference temperature 18 °C ... 28 °C
operating temperature 5 °C ... 40 °C
storage temperature - 10 °C ... 50 °C
Supply: 100 - 240 V / 50 - 60 Hz
Dimensions [W x H x D]: 247 mm x 106 mm x 390 mm
Weight: 4.8 kg
Insulation resistance versus housing: > 2 GΩ (for 500 VDC)

Error tolerance for 4 wire connection

<table>
<thead>
<tr>
<th>Resistance Range</th>
<th>Error Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ω ... 400 Ω</td>
<td>0.003 % + 3 mΩ</td>
</tr>
<tr>
<td>400 Ω ... 2000 Ω</td>
<td>0.005 %</td>
</tr>
<tr>
<td>2000 Ω ... 10000 Ω</td>
<td>0.015 %</td>
</tr>
</tbody>
</table>

Maximal thermoelectric voltage on output terminals is less than < 1 μV

Error tolerance for 2 wire connection

<table>
<thead>
<tr>
<th>Resistance Range</th>
<th>Error Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ω ... 2000 Ω</td>
<td>0.005 % + 10 mΩ</td>
</tr>
<tr>
<td>2 kΩ ... 200 kΩ</td>
<td>0.005 %</td>
</tr>
<tr>
<td>200 kΩ ... 1.2 MΩ</td>
<td>0.01 %</td>
</tr>
</tbody>
</table>

Maximal thermoelectric voltage on output terminals is less than 5 μV for resistances below 2 kΩ and less than 15 μV for resistances to 1.2 MΩ.

Error tolerance Pt sensor simulation

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Pt100</th>
<th>Pt200</th>
<th>Pt500</th>
<th>Pt1000</th>
<th>Pt10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 200 °C ... 200 °C</td>
<td>0.02 °C</td>
<td>0.02 °C</td>
<td>0.02 °C</td>
<td>0.04 °C</td>
<td>0.04 °C</td>
</tr>
<tr>
<td>200 °C ... 500 °C</td>
<td>0.03 °C</td>
<td>0.04 °C</td>
<td>0.06 °C</td>
<td>0.1 °C</td>
<td>0.06 °C</td>
</tr>
<tr>
<td>500 °C ... 850 °C</td>
<td>0.04 °C</td>
<td>0.06 °C</td>
<td>0.15 °C</td>
<td>0.2 °C</td>
<td>0.1 °C</td>
</tr>
</tbody>
</table>