Table of Contents

Introduction .. 3
1. Creating new project... 4
2. Installation of GSDML files ... 6
3. Creation of network connections .. 7
4. Create a sample program: .. 11
5. Further Examples ... 15
 5.1 Reading and Writing of string data types ... 16
 5.2 Retrieving of measurement results ... 18
 5.3 Changing of window limits .. 20
Introduction

This quick start guide describes an approach how you can configure the DIGIFORCE® 9307 via TIA Portal using the example of S7-1511 CPU. Please note that the samples here cannot be directly used in your production line because they have been extremely simplified to reach a better understanding. Therefore, you may have to complete them by checking of status, error, length values etc.

Please also note that you will have to use the DIGIFORCE® 9307 PROFINET manual to get further information about input and output parameters (cyclic as well acyclic data transfer)
1. Creating new project

- Start the Totally Integrated Automation Portal, select Create New Project (a), assign the project a name (b) and click Create (c):
Go to **Devices & networks** (a) on the left side select **Add new device** (b) and look for your CPU (c). Afterwards click the **Add** button (d).
2. Installation of GSDML files

Note: Please make sure that your GSDML file is compatible to the field bus firmware in the DIGIFORCE® 9307. Also for compatibility reasons, uninstall all previous GSDML files of particular device if you have any!

➢ Go to **Options->Manage general station description files (GSD)**

➢ Navigate to **your DIGIFORCE® 9307 GSDML directory** (you will find the GSDML files on burster DVD that you got with your DIGIFORCE® 9307 device or on www.burster.com), select the GSDML file and click **Install**
3. Creation of network connections

- Double click **Device Configuration** (a) in the project tree and switch to **Topology view** (b):

![Diagram showing the process of creating network connections in a project tree and topology view.](image-url)
Now select the DIGIFORCE® 9307 device in the catalog and drag & drop it into the working area (a):
Please select an ethernet port on the S7 and hold the left mouse button down to connect the S7 with DIGIFORCE® 9307:
Change now to **Network view** (a) to assign a controller to the DIGIFORCE® 9307. Click on the link “Not assigned” (b) of DIGIFORCE® 9307 and select your controller (c):

Check if devices also connected physically to the right ports. You find the port number assignment in the section 5.3 *Port-Identification* of **DIGIFORCE® 9307 PROFINET** manual.
4. Create a sample program:

In this section, you will learn how to create a simple program to start and stop a measurement periodically. You will need to refer to sections 8.2 PLC inputs and 8.3 PLC outputs of DIGIFORCE® 9307 PROFINET manual to understand the meaning of inputs and outputs bytes.

- Expand the tree node Program blocks in the Project tree and double click Add new block:
Select in the new window **Organization block** (a) and then **Cyclic interrupt** (b). As language set SCL (c), change the cyclic time to 1.000.000 µs (d) and click OK (e):

Type in the following source code in the code field of the new block:

```plaintext
IF %Q259.0 = TRUE THEN
  %Q259.0 := FALSE;
ELSE
  IF %I256.0 = FALSE THEN
    RETURN;
  END_IF;
  %Q259.0 := TRUE;
END_IF;
```

Please note: the addresses may be different. You have to check them in the Device view->Device overview of the DIGIFORCE® 9307.
You will also see that the TIA-Editor replaces the input/output addresses with tags. You can change the tags names in PLC Tag table:

<table>
<thead>
<tr>
<th>PLC tags</th>
<th>Name</th>
<th>Tag table</th>
<th>Data type</th>
<th>Address</th>
<th>Retain</th>
<th>Visible</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUT_READY</td>
<td>Standard-Variables...</td>
<td>Bool</td>
<td>%W256.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>IN_START</td>
<td>Standard-Variables...</td>
<td>Bool</td>
<td>%W259.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Before you load the project into the CPU you have to set the IP addresses of your controller and your device. To do this please go to Device view (a) and select Ethernet addresses (b) in General tab. Set now a desired IP-Address (c):
To load the configuration into the CPU select it first and then go to **Online->Download to device** and click on **Start search** (a) to look for your controller. Then select the controller and click on **Load** (b):

The DIGIFORCE® 9307 starts now a new measurement waits a second, and stops the measurement, waits a second and starts the measurement again and so on.

Note: Make sure that PROFINET Control is enabled in DIGIFORCE® 9307. For details, see chapter 5.5 **Configuration menu in DIGIFORCE® 9307** of DIGIFORCE® 9307 PROFINET manual.
5. Further Examples

In the followed examples, a Hardware-ID is used to access a certain slot. To find this, please select a DIGIFORCE® 9307 device in Topology view or Network view and then switch to Device view. Click with the right mouse button on the desired module, e.g. General Setup and select Properties:

You will see the hardware identifier in the tab General:
5.1 Reading and Writing of string data types

In this example, we perform a read access on slot 30/Subslot 1/index 10 to get the device type of DIGIFORCE® 9307 and then we will set the first nine characters of this string as DIGIFORCE® 9307 station name on Slot 30/Subslot 1/Index 19. For these acyclic operations, you will need an instance of RDREC und WRREC blocks. You can see the new station name in the info menu of DIGIFORCE® 9307.

PLC parameters table:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Valid</td>
<td>Standard-Variable</td>
<td>Bool</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Busy</td>
<td>Standard-Variable</td>
<td>Bool</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Error</td>
<td>Standard-Variable</td>
<td>Bool</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Status</td>
<td>Standard-Variable</td>
<td>DWord</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Done</td>
<td>Standard-Variable</td>
<td>Bool</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>lenRead</td>
<td>Standard-Variable</td>
<td>UInt</td>
<td></td>
</tr>
</tbody>
</table>

Sourcecode:

```plaintext
REPEAT
"RDREC_DB"(REQ:=TRUE,
  ID := 268,  // 268: HW-ID for General Setup (see introduction of 'Further examples')
  INDEX:=10,  // Index 10: Device Detection
  MLEN:=18,  // Max. length of data to read
  VALID=>#Valid,  // New Data Received and valid
  BUSY=>#Busy,  // Read not completed yet
  ERROR=>#Error,  // Error
  STATUS=>#Status,  // State
  LEN=>#lenRead,  // Number of bytes was read from device
  RECORD:= #data);  // Array[0..18] of Byte
UNTIL NOT #Busy
END_REPEAT;

IF #Error = TRUE OR #Status <> 0 THEN
  RETURN;
END_IF;

REPEAT
"WRREC_DB"(REQ:=TRUE,
  ID := 268,  // HW-ID for General Setup (see introduction of 'Further examples')
  INDEX:=19,  // Index 19: Station Name
  LEN:=9,  // Length of data to write
  DONE=>#Done,  // Write done
  BUSY=>#Busy,  // Write not completed yet
  ERROR=>#Error,  // Error
  STATUS=>#Status,  // State
  RECORD:=#data);  // Write the data has being read in RDREC_DB (first 9 bytes)
UNTIL NOT #Busy AND #Done
END_REPEAT;
```
Example 2: Writing of serial number SN1 into device order sheet

Note: Datatype String in TIA Portal contains two additional bytes, which represent the length of the string. To avoid these two bytes being sent use the function ‘Strg_TO_Chars’ to convert the String to a byte array as shown below:

PLC parameters table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>serial</td>
<td>String</td>
<td></td>
</tr>
<tr>
<td>bytesWritten</td>
<td>UInt</td>
<td></td>
</tr>
<tr>
<td>serialAsByteArray</td>
<td>Array[0..64] of Byte</td>
<td></td>
</tr>
</tbody>
</table>

Sourcecode:

```plaintext
#serial := "SN123456789";

Strg_TO_Chars(STRG:= #serial,  
pChars:= 0,  
Cnt => #bytesWritten,  
Chars:= #serialAsByteArray);

REPEAT  
"WRREC_DB"(REQ := TRUE,  
  ID := 268,  
  INDEX := 86,  
  LEN := INT_TO_UINT(LEN(#serial)),  
  DONE => #Done,  
  BUSY => #Busy,  
  ERROR => #Error,  
  STATUS => #Status,  
  RECORD := #serialAsByteArray);  
UNTIL NOT #Busy AND #Done
END_REPEAT;
```


5.2 Retrieving of measurement results

Note: The reading of all X- or Y-Coordinates of a curve an once is only supported in the DIGIFORCE® 9307 PROFINET Firmware V16.0.1 and higher.

This example shows you how to read the X-Coordinates of the current curve:

PLC parameters tables:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>▼ Temp</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Valid</td>
<td>Bool</td>
</tr>
<tr>
<td>6</td>
<td>Done</td>
<td>Bool</td>
</tr>
<tr>
<td>7</td>
<td>Busy</td>
<td>Bool</td>
</tr>
<tr>
<td>8</td>
<td>Error</td>
<td>Bool</td>
</tr>
<tr>
<td>9</td>
<td>Status</td>
<td>DWord</td>
</tr>
<tr>
<td>10</td>
<td>i</td>
<td>Int</td>
</tr>
<tr>
<td>11</td>
<td>lastIndex</td>
<td>DWord</td>
</tr>
<tr>
<td>12</td>
<td>lenRead</td>
<td>Uint</td>
</tr>
<tr>
<td>13</td>
<td>measVal</td>
<td>DWord</td>
</tr>
<tr>
<td>14</td>
<td>tmp</td>
<td>DWord</td>
</tr>
</tbody>
</table>

Sourcecode:

```plaintext
REPEAT
"WRREC_DB"(REQ := TRUE,
ID := 454,
INDEX := 10,
LEN := 2,
DONE => #Done,
BUSY => #Busy,
ERROR => #Error,
STATUS => #Status,
RECORD := "Data".data);
UNTIL NOT #Busy AND #Done
END_REPEAT;

IF #Error = TRUE OR #Status <> 0 THEN
  RETURN;
END_IF;
REPEAT
```

// Write access to index 10 to prepare the curve
// HW-ID (see introduction of 'Further examples')
// Index
// Length in bytes to write

// Any 2 bytes to prepare the curve

// If write failed -> return
"RDREC_DB"(REQ := TRUE,
 ID := 454,
 INDEX := 10,
 MLEN := 4,
 VALID => #Valid,
 BUSY => #Busy,
 ERROR => #Error,
 STATUS => #Status,
 LEN => #lenRead,
 RECORD := #lastIndex);
UNTIL NOT #Busy
END_REPEAT;

#lastIndex := SHR(IN := #lastIndex, N := 16);

IF #Error = TRUE OR #Status <> 0 OR #lenRead <> 2 OR #lastIndex = 0 THEN
 RETURN;
END_IF;
REPEAT
 "RDREC_DB"(REQ := TRUE,
 ID := 454,
 INDEX := 11,
 MLEN := 20000,
 VALID => #Valid,
 BUSY => #Busy,
 ERROR => #Error,
 STATUS => #Status,
 LEN => #lenRead,
 RECORD := "Data".data);
UNTIL NOT #Busy
END_REPEAT;

IF #Error = TRUE OR #Status <> 0 OR #lenRead < 4 THEN
 RETURN;
END_IF;

FOR #i := 0 TO DWORD_TO_INT(#lenRead - 1) BY 4 DO
 #measVal := 0;
 #tmp := BYTE_TO_DWORD("Data".data[#i]);
 #measVal := #measVal + SHL(IN := #tmp, N := 24);
 #tmp := BYTE_TO_DWORD("Data".data[#i + 1]);
 #measVal := #measVal + SHL(IN := #tmp, N := 16);
 #tmp := "Data".data[#i + 2];
 #measVal := #measVal + SHL(IN := #tmp, N := 8);
 #measVal := #measVal + "Data".data[#i + 3];
 "Data".coordinates[#i / 4] :=
 DWORD_TO_REAL(#measVal);
END_FOR;

// Read the number of curve values
// HW-ID (see introduction of 'Further examples')
// Index
// Max. length to read

// Number of bytes read
// Number of values in the curve - 1

// upto and including DIGIFORCE® 9307 field bus firmware FW-2018.1.0 we have to use DWord to get
U16 Types from DIGIFORCE® 9307 und shift left the result by 2 bytes

// Read access to read out curve coordinates
// HW-ID(see introduction of 'Further examples')
// Index
// Max. length to read

// Number of bytes read
// Array to store the read coordinates

// If read failed -> return

// Write bytes to DWORD and convert to Real
// Shift left the value by 24 bit
// Shift left the value by 16 bit
// Shift left the value by 8 bit
// Convert to Real and store in MeasValues[] Array
5.3 Changing of window limits

This example shows you how to enable Evaluation Window 1 and set its coordinates.

Note: You have to write all four window limits and then confirm them with index 15. It is not possible to change only one single limit, e.g. xMax.

PLC parameters table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Busy</td>
<td>Bool</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>Bool</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>DWord</td>
<td></td>
</tr>
<tr>
<td>onOff</td>
<td>UInt</td>
<td></td>
</tr>
<tr>
<td>xMin</td>
<td>Real</td>
<td></td>
</tr>
<tr>
<td>xMax</td>
<td>Real</td>
<td></td>
</tr>
<tr>
<td>yMin</td>
<td>Real</td>
<td></td>
</tr>
<tr>
<td>yMax</td>
<td>Real</td>
<td></td>
</tr>
<tr>
<td>event</td>
<td>Byte</td>
<td></td>
</tr>
<tr>
<td>Done</td>
<td>Bool</td>
<td></td>
</tr>
</tbody>
</table>

Sourcecode:

```plaintext
#onOff := 1;   // Activate Window 1
#event := 1;   // Acknowledgement for indices 11, 12, 13,14
#xMin := 1.5;  // Xmin coordinate of window 1
#xMax := 3.0;  // Xmax coordinate of window 1
#yMin := 2.5;  // Ymin coordinate of window 1
#yMax := 4.0;  // Ymax coordinate of window 1

REPEAT
    "WRREC_DB"(REQ := TRUE,
        ID := 298,                 // HW-ID for Evaluation Window 1 (see introduction of 'Further examples')
        INDEX := 10,              // Index 10: switch on window 1
        LEN := 2,                 // Length of UINT16
        DONE => #Done,            // Write done
        BUSY => #Busy,            // Write not completed yet
        ERROR => #Error,          // Error
        STATUS => #Status,        // State
        RECORD := #onOff);
UNTIL NOT #Busy AND #Done
END_REPEAT;

REPEAT
    "WRREC_DB"(REQ := TRUE,
        ID := 298,                 // HW-ID for Evaluation Window 1 (see introduction of 'Further examples')
        INDEX := 11,              // Index 11: Window 1 limit Xmin
        LEN := 4,                 // Length of UINT16
        DONE => #Done,            // Write done
        BUSY => #Busy,            // Write not completed yet
        ERROR => #Error,          // Error
        STATUS => #Status,        // State
    )
UNTIL NOT #Busy AND #Done
END_REPEAT;
```
RECORD := #xMin);
UNTIL NOT #Busy AND #Done
END_REPEAT;

REPEAT
"WRREC_DB"(REQ := TRUE,
ID := 298, // HW-ID for Evaluation Window 1 (see introduction of 'Further examples')
INDEX := 12, // Index 12: Window 1 limit Xmax
LEN := 4, // Length of Real
DONE => #Done,
BUSY => #Busy,
ERROR => #Error,
STATUS => #Status,
RECORD := #xMax);
UNTIL NOT #Busy AND #Done
END_REPEAT;

REPEAT
"WRREC_DB"(REQ := TRUE,
ID := 298, // HW-ID for Evaluation Window 1 (see introduction of 'Further examples')
INDEX := 13, // Index 13: Window 1 limit Ymin
LEN := 4, // Length of Real
DONE => #Done,
BUSY => #Busy,
ERROR => #Error,
STATUS => #Status,
RECORD := #yMin) ;
UNTIL NOT #Busy AND #Done
END_REPEAT;

REPEAT
"WRREC_DB"(REQ := TRUE,
ID := 298, // HW-ID for Evaluation Window 1 (see introduction of 'Further examples')
INDEX := 14, // Index 14: Window 1 limit Ymax
LEN := 4, // Length of Real
DONE => #Done,
BUSY => #Busy,
ERROR => #Error,
STATUS => #Status,
RECORD := #yMax) ;
UNTIL NOT #Busy AND #Done
END_REPEAT;

REPEAT
"WRREC_DB"(REQ := TRUE,
ID := 298, // HW-ID for Evaluation Window 1 (see introduction of 'Further examples')
INDEX := 15, // Index 15: adopt values entered into indices 11, 12, 13,14
LEN := 1, // Length of Real
DONE => #Done,
BUSY => #Busy,
ERROR => #Error,
STATUS => #Status,
RECORD := #event);
UNTIL NOT #Busy AND #Done
END_REPEAT;