Digital měřidlo
Model 9163

Poznámka:
Záruka se nevztahuje na odpovědnost za chyby/nepřesnosti v operačním manuálu.

Součástí, zařízení a změněné hodnoty snímačů vyrobené firmou burster praezisionsmesstechnik (dále odkazován jako "produkty") jsou výsledkem pečlivého vývoje a cíleného výzkumu. Od data dodání produktu burster poskytuje záruku při řádných podmínkách a použití. Tato záruka se vztahuje na kryt produktu a výrobní defekty po určenou dobu určenou v záručním listu produktu. Nicméně si burster vyhrazuje právo vyloučit ze záruky odpovědnost za následné poškození způsobené nesprávným použitím produktu, zejména zahrnuje úspěch na trhu stejně jako vhodnost produktů pro konkrétní účely. Mimo jiné burster nenesí žádnou záruku na za přímé, nepřímé nebo neúmyslné poškození stejně jako nepřímé nebo další poškození vyplývající z opatření nebo použití uvedené v této dokumentaci.
EG-Konformitätserklärung

EC-Declaration of Conformity according to EN ISO/IEC 17050-1:2004

Name des Herstellers: burster präzisionsmesstechnik gmbh & co kg

Adresse des Herstellers: Talstr. 1-5
Manufacturer’s Address: 76593 Gernsbach, Germany

Erklärt unter alleiniger Verantwortung, dass das gelieferte Produkt declares under sole responsibility that the product as originally delivered

Produktname: Sensormaster
Product Name: Digital Indicator

Modellnummer(n) (Typ): 9163
Models Number / Type: 9163

Produktionsorten: Diese Erklärung beinhaltet obengenannte Produkte mit allen Optionen

This declaration covers all options of the above product(s)

mit den folgenden europäischen Richtlinien übereinstimmt und entsprechend das CE-Zeichen trägt:
complies with the requirements of the following applicable European Directives, and carries the CE marking accordingly:

- **2006/95/EC** Elektrische Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen
 Low Voltage Electrical Equipment designed for use within certain voltage limits
- **2004/108/EC** Elektromagnetische Verträglichkeit
 EMC Electromagnetic Compatibility

Obengenannte Produkte entsprechen folgenden harmonisierten Normen:
Above named products conform with the following product standards:

- **Sicherheit:** IEC 61010-1:2001 / EN 61010-1:2001 Messkategorie 1 Schutzklasse II Einbau Version Schutzklasse I Tisch Version

 EMC Generic emission:

- **EMV Störfestigkeit:** IEC 61326-1:2005 / EN 61326-1:2006 Industrie Bereich
 EMC Generic immunity:

Ergänzende Informationen: Um optimale Störfestigkeit zu erreichen ist das Produkt über geschirmte Leitungen anzuschließen.
Additional Information: In order to reach optimal electromagnetic immunity the device has to be conducted with shielded line

Das Produkt wurde in einer typischen Konfiguration getestet.
The product was tested in a typical configuration.

Diese Konformitätserklärung betrifft alle nach Ausstellungsdatum ausgelieferten Produkte:
This DoC applies to above-listed products placed on the EU market after:

Gernsbach 09.07.2008
Date: 09.07.2008
Qualität Manager: i.V. Alfred Großmann

Diese Dokument entnehmen zu EN ISO/IEC 17050-1:2004 Abs. 6.1 ohne Unterschrift giltig / According EN ISO/IEC 17050 this document is valid without a signature.

burster präzisionsmesstechnik gmbh & co kg
Talstr. 1-5 D-76593 Gernsbach (Postfach 1432 D-76587 Gernsbach) Tel. 07224/645-0 Fax 645-88
www.burster.de www.burster.com info@burster.de
Digital měřidlo Model 9163

Upozornění
Následující instrukce musí být dodrženy pro prevenci elektrického úrazu a zranění:

- Dodržujte všechny bezpečnostní upozornění a instrukce
- Nepřipojujte vyšší napětí než je specifikováno. Podporované napěťové rozsahy jsou vypsány v technické specifikaci.
- Před rozmontovalním přístroje odpojte zdroj elektrické energie.
- Před započetím měření se ujistěte, že jsou všechny parametry správně nastaveny.
- Nepoužívejte přístroj pokud je poškozen.
- Nikdy nepoužívejte přístroj ve výbušném prostředí.

Varování
Následující instrukce musí být sledovány pro prevenci před zraněním a poškozením majetku:

- Jednotky napájené ze silně 230 V mají ochranu třídy II a jsou klasifikovány jako zařízení třídy II.
- Přístroje s napájením 20...27 AC/DC musí být napájeny pouze ze zdroje proudu s ochranou třídy III.
- Připojte jistič (se značkou CE) do vstupního napájení pro odpojení přístroje od zdroje elektrické energie. Jistič musí být umístěn v bezprostřední blízkosti přístroje se snadnou dostupností pro uživatele. Jeden jistič může být použit pro více než jeden přístroj.
- Externí řídící obvody připojené k přístroji musí mít ochranu třídy II.
- Desky plošných spojů přístroje jsou náchylné na elektrostatické napětí. Učtěte potřebná opatření při jejich manipulaci.
- Nikdy nepoužívejte čistící rozpouštědla založena na uhlovodících (např. benzen a další)
7.4 Zobrazení pozice desetinné tečky ... 59
7.5 Zobrazení hodnot stupnice .. 60
8.1 Nastavení vstupů .. 62
 8.1.1 Nastavení hlavního vstupu .. 62
 8.1.2 Nastavení pomocného vstupu .. 68
8.2 Výstupy .. 72
 8.2.1 Určení parametrů výstupů .. 72
 8.2.2 Výběr analogového výstupu .. 73
 8.2.3 Vyberte buzení snímače .. 75
 8.2.4 Výběr budícího napětí snímače mezi 15 V / 24 V 76
 8.2.5 Jemné nastavení analogového výstupu ... 78
8.3 Nastavení sériového rozhraní .. 79
8.4 Rozhraní Profibus (Pouze přístroje s volitelným Profibusem) 80
9.1 Nastavení limitu alarmu .. 83
9.2 Regulace na limitech alarmů .. 90
9.3 Výběr typu kontaktu (NC - rozpinací / NO - spinací) 92
10.1 Přístup ke chráněné oblasti .. 93
10.2 Permanentní zámek .. 94
10.3 Nastavení přístroje .. 97
 10.3.1 Matematické funkce .. 97
 10.3.2 Povolování alarmů limitů .. 104
 10.3.3 Přířazení tlačítek .. 104
 10.3.4 Digitální vstupy .. 107
 10.3.5 Nastavení displeje .. 109
10.4 Linearizace vstupu .. 112
10.5 Kalibrace specifických snímačů ... 116
 10.5.1 Potenciometr nebo lineární signál .. 116
 10.5.2 Tenzometrické snímače .. 119
 10.5.3 RTD (PT100) .. 123
 10.5.4 Termočlánek (TC) .. 125
 10.5.5 Nastavení továrního nastavení kalibrace 127
11.1 Vypnutí (stand-by) .. 129
11.2 Zapnutí (power-up) .. 129
12.1 Čištění .. 131
12.2 Oprava .. 131
12.3 Poradce při potížích .. 132
15.1 Možnosti menu .. 137
15.2 Blokové schéma .. 150
15.3 Funkční blokové schéma .. 151
1. Představení

Tento přístroj je navržen pro měření rychle se měnících elektrických veličin. Obsahuje až dva hlavní analogové vstupy a dva pomocné vstupy, které mohou být použity pro nespočet aplikací jako je například diferenciální měření, nastavování žádané hodnoty, atd.

Hlavní vstupy jsou použitelné pro standardní lineární signály a pro převodníky tlaku, síly, potenciometry, termočlánky a odporové teplotní snímače. Uživatelská lineárizace vstupů je také možná.

Vstupy mohou být nastaveny přes klávesnici.

Tento rozsah indikátorů od burstra představuje ideální řešení pro všechny aplikace, kde je rozhodující kontinuální měření a vysoká nastavitelnost.

Takové aplikace zahrnuje:

• Snímání tlaku a jeho sledování (absolutního nebo diferenciálního)
• Snímání polohy a její sledování
• Sledování limitních hodnot měřených veličin v automatizovaném systému zahrnující vysokorychlostní procesy se zpětnovazební vazbou.

Přístrojí mají další dva digitální vstupy, které mohou být použity pro reset a hold.

Dále je dostupná až čtyři relé nebo logicí výstupy s nastavitelnými funkcemi.

Analogový výstup s vysokým rozlišením a optickým oddělením může zajišťovat funkci jako je analogová přepínací vazba pro aktuální, maximální hodnoty, limity a rozdílové hodnoty.

Digitální indikátor 9163 může být doplněn rozhraním Profibus-DP. Rozhraní zajišťuje jednoduché měření prostřednictvím digitálního indikátoru 9136 v automatizovaných systémech.

1.1 Běžné použití

Digitální indikátor 9163 je navržen pro měření rychle se měnících elektrických veličin. Může být použit v množství potenciálních aplikací zahrnující diferenciální měření.

Vstupy 9163 jsou nastavovány přes klávesnici. Jsou použitelné pro standardní lineární signály a pro převodníky tlaku, síly, potenciometry, termočlánky a odporové teplotní teploty.

1.2 Zákaznický servis

1.2.1 Oddělení zákaznického servisního oddělení

Pro dotazy ohledně oprav

Zavolejte na číslo:

543 250 886 (firma meatest, výhradní zastoupení pro ČR a SK)

Mějte připraveno výrobni číslo pro případné dotaz. Potřebujeme vyhledat technické specifikace vašeho přístroje pro možnost poskytnutí rychlé pomoci.

Sériové číslo je uvedeno na typovém štítku.

1.2.2 Zárucha

burster praezisionsmesstechnik gmbh & co kg poskytuje záruku po dobu 24 měsíců od dodání.

Všechny opravy během tohoto období budou provedeny bezplatně.

Poškození způsobené nesprávným použitím není kryto touto zárukou.

Pokud posíláte zařízení na opravu, mějte na vědomí požadavky na balení a přepravu:

• Pokud máte problémy s jednotkou, napište souhrnný popis problému.
• Technické specifikace se mohou měnit kdykoliv bez upozornění. Výslovně uvádíme, že nebudeme akceptovat odpovědnost za následné škody.

1.2.3 Adresa

burster praezisionsmesstechnik gmbh & co kg

Talstrasse 1 – 5
D-76593 Gernsbach, Germany
Tel: 0049 (0)7224 – 645 – 0
Fax: 0049 (0)7224 – 645 – 88
e-mail: info@burster.de
1.2.4 Data přístroje

- Prosíme vyplňte tabulku, která je uvedena níže. Všechny údaje jsou na štítku výrobku po rozbalení.

Pokud potřebujete potřebovat podporu zákaznického centra firmy burster budete muset tyto informace znát.

<table>
<thead>
<tr>
<th>SN:</th>
<th>(sériové číslo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE:</td>
<td>(konečné číslo produktu)</td>
</tr>
<tr>
<td>Type:</td>
<td>(objednací číslo)</td>
</tr>
<tr>
<td>Supply:</td>
<td>(typ napájení)</td>
</tr>
<tr>
<td>VERS:</td>
<td>(verze software)</td>
</tr>
</tbody>
</table>

1.3 Základní model

- 1 hlavní stup pro tenzometr, potenciometr, DC/DC snímač, PT100 nebo termočlánek
- 2 pomocné vstupy pro standardní signály a potenciometr
- 1 napájecí zdroj pro vysílač
- 2 nastavitelné datové vstupy NPN nebo PNP
- 1 volitelný zdroj (budíční snímač), vhodný pro tenzometrické snímače, potenciometry nebo vysílače
- 4 výstupy: výstupy relé OUT1, OUT2, OUT3 a OUT4

1.4 Na přání

1.4.1 Jednotka pro umístění do panelu

- Jeden přídavný hlavní vstup (užitečný pro diferenciální měření)
- Analogový výstup
- Optický oddělené sériové rozhraní RS232, RS485
- Konektor Profibus

1.4.2 Stolní jednotka

- Jeden přídavný hlavní vstup (užitečný pro diferenciální měření)
- Analogový výstup
- Optický oddělené sériové rozhraní RS232, RS485
- Konektor USB

1.4.3 DigiVision 9163-P100 software

Digitální indikátor 9163 je součástí podporované skupiny v počítačovém programu pro sběr dat. Digitální indikátor musí být vybaven sériovým rozhraním RS232/RS485 pro možnost využití tohoto nástroje.

Koupí přídavného softwarového balíčku můžete zobrazit až osm měření najednou. Navíc váš program DigiVision umožní zobrazit rozsah a testovací data.
2. Příprava před použitím

2.1 Rozbalení

Proveďte tyto úkoly okamžitě po vybalení:

- Vypište technická data ze štítku přístroje do tabulky v sekci 1.2.4: "Data přístroje".
- Při kontaktu zákaznického servisu burstera budete tyto údaje potřebovat.
- Důkladně prohlédněte přístroj pro nalezení případného poškození.
- Zkontrolujte úplnost dodávky.

Standardní dodávka obsahuje:

- Model 9163 digitální indikátor
- Dvě upevňující svorky
- Ochrana před úrazem elektrického proudu
- Ochranné proti prachové těsnění
- Operační manuál (EN, DE)

- Ujistěte se, že objednávaná konfigurace se shoduje s konfigurací přístroje.
- Digitální indikátor musí být přesně konfigurován pro danou aplikaci.
 - Správný počet a typ vstupů a výstupů
 - Potřebné volitelné konfigurace a přítomnost příslušenství
 - Správné napájecí napětí

- Uvědomte bursteru okamžitě po zjištění nesrovnalostí, chybějících částí nebo známkách poškození.
- Před instalací panelového měřítka 9163 si přečtěte sekci 2.2: "Instalace a upevnění v panelu".

2.2 Instalace a upevnění v panelu

2.2.1 Rozměry měřítka

![Pokračování dole]
Pokud jsou snímače provozovány v hořlavém nebo výbušném prostředí:

- Připojte tyto snímače do jednotky výhradně přes odpovídající izolační body.
- Všechny rozhraní musí vytvářet aplikací nažírením.
- Vedte napájecí kabely odděleně od vstupů a výstupů jednotky.
- Uspořádejte vodiče snímačů odděleně od výkonových sekci a relé.
- Nikdy neinstalujte jednotku do kontrolní místnosti, která obsahuje stykače, relé, tyristorové regulátory (využívající fázové řízení), motory, výkonové přepínací, atd.
- Nikdy nevystavujte jednotku prachu, vlhkosti, korozivním plynům nebo zdrojům tepla.
- Ujistěte se, že průduchy chlazení jsou volné.
 - Ventilační otvory nesmí být nikdy zakryty.
 - Operační teplota leží v rozsahu 0 °C až 50 °C.
 - Maximální okolní teplota je 50 °C
- Použijte kabelová očka pro utahovací moment 0.5 Nm.

Varování

Možnost úrazu elektrickým proudem!

- Jednotky s napájecím napětím 230 V mají ochranu třídy II a jsou klasifikovány jako instalace třídy II
- Přístroje s napájením 20…27 AC/DC musí být napájeny se zdroje napětí třídy ochrany III.
- Panelové měřidlo nemá vypínač!
- Připojte jistíč (se značkou CE) do vstupních svorek napájení pro odpojení zdroje napájení.
- Jistíč musí být umístěn bezprostředně v blízkosti přístroje s jednoduchým přístupem uživatele.
- Jistíč může být použit pro více jak jeden měřicí přístroj.

Balení digitálního indikátoru obsahuje následující instaláční prvky:

- Upevňující svorky (A) pro pevnění jednotky do panelu
- Těsnění (B) pro ochranu proti prachu a stříkající vodě
- Upevněte digitální indikátor do panelu podle obrázku.
3. Elektrické spojení

Varování
Možnost úrazu elektrickým proudem!

Jednotky s napájecím napětím 230 V mají ochranu třídy II a jsou klasifikovány jako instalace třídy II

Přístroje s napájením 20…27 AC/DC musí být napájeny se zdroje napětí třídy ochrany III.

Panelové měřidlo nemá vypínač!

Připojte jistič (se značkou CE) do vstupních svorek napájení pro odpojení zdroje napájení.

Jistič musí být umístěn bezprostředně v blízkosti přístroje s jednoduchým přístupem uživatele.

Jistič může být použit pro více jak jeden měřící přístroj.

Všechny připojné body jsou v zadní části jednotky.

Sekce 13: "Technické parametry" obsahuje technické specifikace.

Table 1: Kabely pro elektrické propojení digitálního měřidla

<table>
<thead>
<tr>
<th>Funkce</th>
<th>Typ kabelu</th>
<th>Délka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propojovací svorky</td>
<td>Do 1 mm²</td>
<td>1 m</td>
</tr>
<tr>
<td>Spojení vedoucí k výstupům relé</td>
<td>Do 1 mm²</td>
<td>3.5 m</td>
</tr>
<tr>
<td>Propojení sériového kabelu</td>
<td>Do 0.35 mm²</td>
<td>3.5 m</td>
</tr>
<tr>
<td>Vstupy termočlánku</td>
<td>Do 0.8 mm²</td>
<td>vyvážené 5 m</td>
</tr>
<tr>
<td>Vstupy pro tenzometry, potenciometry, standardní signály a pro odporové snímače PT100</td>
<td>Do 1 mm²</td>
<td>3 m</td>
</tr>
<tr>
<td>Analogové vstupy pro zpětnou vazbu</td>
<td>Do 1 mm²</td>
<td>3.5 m</td>
</tr>
<tr>
<td>Digitální vstupy a výstupy</td>
<td>Do 1 mm²</td>
<td>3.5 m</td>
</tr>
</tbody>
</table>
Digital měřidlo Model 9163

Electrical connections 9163-Vxxxx0

Figure 3: Souhrnné elektrické propojení digitálního indikátoru 9163 ve verzi Vxxxx0

Vstup IN1 tenzometrický senzor 4-vodičově

Stránka 19/156

Testovací a kalibrační zpráva snímač určuje velikost kalibračního rezistoru.

Vstup IN1 TC - termočlánek

Poznámka:
Můžete propojit termočlánky typu J, K, R, S a T.

Můžete připojit termočlánky typu B, E, N, L, U, G, D a C společně s provedením linearizace.

Ujistěte se, že jste připojili správně polaritu termočlánku.

Použijte vhodné prodlužované vedení pro prodloužení přívodů.

Stránka 20/156
Vstup IN1 třívodičový snímač s napájením z měřicí jednotky

Typ snímače záleží na vybraném vysílači.

Vstup IN1 dvouvodičové zapojení snímače s napájením pomocí měřicí jednotky

Toto je použitelné pro lineární stejnosměrné proudové signály

<table>
<thead>
<tr>
<th>Rozsah proudu</th>
<th>Výstupní impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/4 mA až 20 mA</td>
<td>50 Ω</td>
</tr>
</tbody>
</table>

Vstup IN1 (proudový)

Tento vstup je použitelný pro lineární stejnosměrné napěťové vstupy

<table>
<thead>
<tr>
<th>Napětí</th>
<th>Výstupní impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>±60 mV</td>
<td>>10 MΩ</td>
</tr>
<tr>
<td>±100 mV</td>
<td>>10 MΩ</td>
</tr>
<tr>
<td>±1.0 V</td>
<td>>2 MΩ</td>
</tr>
<tr>
<td>±5.0 V</td>
<td>>2 MΩ</td>
</tr>
<tr>
<td>±10.0 V</td>
<td>>2 MΩ</td>
</tr>
</tbody>
</table>

Vstup IN1 potenciometr

Poznámka: Použijte pouze vodiče s průřezem > 1 mm².
3.1.2 Vstupy a výstupy 9163 ve verzi Vxxxx1 (dvou-kanálová jednotka)

Varování!
Možnost úrazu elektrickým proudem!

Externí řídící obvody připojené k přístroji musí mít třídu ochrany II.

Poznámka:
Všechny kondenzátory musí vyhovovat standartu VDE (třída x2) a schopné vydržet minimálně 230 VAC. Maximální odporové ztráty kondenzátoru musí být minimálně rovny 2 W.

Poznámka:
Společnost burster präzisionsmesstechnik gmbh & co kg nesne za žádných okolností odpovědnost za zranění osob nebo škody na majetku vzniklé po neodborném zásahu, nesprávném použití nebo použití, které není přítomno v operačním manuálu.

Následujte tyto instrukce při zapojování jednotky:
- Umístěte vstupní svorky odděleně od napájecích kabelů a od výkonových výstupů přístroje.
- Použijte kroucené kably se stíněním minimálně na jedné straně.
- Pro výstupní vedení, které je propojeno se zátěži (stýkače, solenoidové ventily, motory, ventilátory, atd.) připojte RC články paralelně se zátěží.
 Tímto způsobem snižujte vyzařované rušení.
- Pro indukční zátěž připojte diodu typu 1N4007 paralelně k zátěži.
Vstup IN1 4-vodičový tenzometrický snímač

Poznámka:
Připojte vodič snímače "CAL" do svorkovnice 24 tak, aby měl stejný potenciál jako "-Exc". Pokud jsou propojené vodiče prohozeny, přístroj zobrazí "Hi Hi Hi Hi" nebo "EE EE EE EE" po 80 % kalibraci.

Testovací a kalibrační zpráva snímače určuje velikost kalibracního rezistoru.

Vstup IN2 4-vodičový tenzometrický snímač

Poznámka:
Připojte vodič snímače "CAL" do svorkovnice 24 tak, aby měl stejný potenciál jako "-Exc". Pokud jsou propojené vodiče prohozeny, přístroj zobrazí "Hi Hi Hi Hi" nebo "EE EE EE EE" po 80 % kalibraci.

Testovací a kalibrační zpráva snímače určuje velikost kalibracního rezistoru.

Vstup IN1 TC – termočlánek

Můžete propojit termočlánek typu J, K, R, S a T.

Můžete připojit termočlánek typu B, E, N, U, G, D a C společně s provedením linearizace.

Vstup IN1 připojen k tří-vodičovému snímači s napájením pomocí měřicí jednotky
Model 9163

Digital měřidlo

Vstup IN2 připojen k tří-vodičovému snímači s napájením pomocí měřicí jednotky

![Diagram](image)

Typy snímačů záleží na vybraném vysílači.

Vstup IN1 připojen k dvouvodičovému snímači s napájením pomocí měřicí jednotky

![Diagram](image)

Tento vstup je použitelný pro lineární stejnosměrné signály proudu

<table>
<thead>
<tr>
<th>Rozsah proudu</th>
<th>Výstupní impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/4 mA až 20 mA</td>
<td>50 Ω</td>
</tr>
</tbody>
</table>

Vstup IN1 (napětí)

![Diagram](image)

Tento vstup je použitelný pro lineární stejnosměrné napěťové vstupy

<table>
<thead>
<tr>
<th>Napětí</th>
<th>Výstupní impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>±0.06 V</td>
<td>>10 MΩ</td>
</tr>
<tr>
<td>±0.1 V</td>
<td>>10 MΩ</td>
</tr>
<tr>
<td>±1.0 V</td>
<td>>2 MΩ</td>
</tr>
<tr>
<td>±5.0 V</td>
<td>>2 MΩ</td>
</tr>
<tr>
<td>±10.0 V</td>
<td>>2 MΩ</td>
</tr>
</tbody>
</table>
Vstup IN2 (proud)

Tento vstup je použitelný pro lineární stejnosměrné signály proudu

<table>
<thead>
<tr>
<th>Rozsah proudù</th>
<th>Výstupní impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/4 mA až 20 mA</td>
<td>50 Ω</td>
</tr>
</tbody>
</table>

Vstup IN2 (napětí)

Tento vstup je použitelný pro lineární stejnosměrné napěťové vstupy

<table>
<thead>
<tr>
<th>Napětí</th>
<th>Výstupní impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>±60 mV</td>
<td>>10 MΩ</td>
</tr>
<tr>
<td>±100 mV</td>
<td>>10 MΩ</td>
</tr>
<tr>
<td>±1.0 V</td>
<td>>2 MΩ</td>
</tr>
<tr>
<td>±5.0 V</td>
<td>>2 MΩ</td>
</tr>
<tr>
<td>±10.0 V</td>
<td>>2 MΩ</td>
</tr>
</tbody>
</table>

Vstup IN1 potenciometr

Potenciometer $R \geq 100 \ \Omega$

Vstup IN2 potenciometr

Potenciometer $R \geq 100 \ \Omega$

3.1.3 Vstupy a výstupy pro obě verze

Varování!

Možnost úrazu elektrickým proudem!

Externí řídící obvody připojené k přístroji musí mít třídu ochrany II.

Poznámka:

Všechny kondenzátory musí vyhovovat standartu VDE (třída x2) a schopné vydržet minimálně 230 VAC. Maximální odporové ztráty kondenzátoru musí být minimálně rovné 2 W.

Poznámka:
Použijte pouze vodiče s průřezem > 1 mm².

Poznámka:
Použijte pouze vodiče s průřezem > 1 mm².
Model 9163

Poznámka:
Společnost burster prázízionsmesstechnik gmbh & co kg nenese za žádných okolností odpovědnost za zranění osob nebo škody na majetku vzniklém po neodborném zásahu, nesprávném použití nebo použití, které není přítomno v operačním manuálu.

Následujte tyto instrukce při zapojování jednotky:
- Umístěte vstupní svorky odděleně od napájecích kabelů a od výkonových výstupů přístroje.
- Použijte kroucené kabely se stínění minimalně na jedné straně.
- Pro výstupní vedení, které je propojeno se zátěži (stykače, solenoidové ventily, motory, ventilátory, atd.) připojte RC článek paralelně se zátěží.
- Tímto způsobem snížte vyzařované rušení.
- Pro indukční zátěž připojte diodu typu 1N4007 paralelně k zátěži.

Vstupy IN3, IN4 připojení k tří-vodičovému snímači s napájením pomocí měřicí jednotky

Vstupy IN3, IN4 připojené pomocí dvouvodičového snímače s napájením pomocí měřicí jednotky

Vstupy IN3 a IN4 (proud)

Vstupy IN3 a IN4 (napětí)

Vstupy IN3 a IN4 potenciometr

Vpot leží v mezích napájecího napětí potenciometru.
Digital měřidlo

Model 9163

Digitální vstupy DI1 a DI2

Digitální vstupy (PNP): 24V, maximum 5 mA (defaultní konfigurace).

Izolované kontakty (NPN): maximum 5 mA (Hd1).

Použijte parametry 6.x, v menu Hrd k povolení digitálních vstupů DI1 a DI2.

Podrobnější informace jsou uvedeny v sekci 10.3.4: "Digitální vstupy" na stránce 107.

Výstupy OUT1, OUT2, OUT3 a OUT4

Relé: 5 A, 250 V AC / 30 V DC

Varování!

Pokud je připojené napětí dostatek zásah elektrickým proudem. Odpojte napájecí napětí od přístroje před jeho otevřením.

120 Ω ukončovací rezistory mohou být zapojeny u:

Uzavírací (closing) propojka S3, otevírací (opening) S2.

Polarizace linky by měla být vybrána pomocí:

Uzavírací (closing) propojka S4 (S6,S7,S9 propojen; S8 nepropojen)

Sériové rozhraní / MODBUS: RS232

Sériové rozhraní / MODBUS: RS485 2-vodičové (standard):

Můžete vybrat následující typy:

02 ... 10 V, ±10 V, max. 25 mA proti zkratová ochrana

04 ... 20 mA pro a maximální zátěž 500 Ω

Použijte konfigurační parametry pro nastavení typu.
Digital měřidlo
Model 9163

Sériové rozhraní / MODBUS: RS485 4-vodičově

![Serial Interface Diagram]

Varování!
Pokud je připojené napětí dostanete zásah elektrickým proudem.
Odpojte napájecí napětí od přístroje před jeho otevřením.

120 Ω ukončovací rezistory mohou být zapojeny u:

Uzavírací (closing) propojka S3 (Tx), Uzavírací (closing) S2 (Rx).

Polarizace linky pomocí Rx může být vybrána:

Uzavírací (closing) propojka S4, S5 (S6, S7, S9 nepropojen; S8 propojen)

3.1.4 Napájecí zdroj

Před připojením 9163 napájecího zdroje:

- Ujistěte se, že je pro přístroj vhodné připojené napětí.
- Požadované napětí může být nalezeno podle objednávacího čísla:

<table>
<thead>
<tr>
<th>Objednávací číslo</th>
<th>Správný rozsah napětí</th>
</tr>
</thead>
<tbody>
<tr>
<td>9163-V0xxxx</td>
<td>100 to 240 V AC/DC</td>
</tr>
<tr>
<td>9163-V1xxxx</td>
<td>20 to 27 V AC/DC</td>
</tr>
</tbody>
</table>

- Vybarve jistě pojistkou pro napájecí napětí k elektrickým přístrojům v panelu.
- Vždy pro elektrické propojení používejte kably pro správné napětí a proudy.

Podrobnější informace můžete nalezout v sekci 3: "Elektrické spojení" na stránce 17.

Hodnoty napětí a proudů jsou vyjmenovány v sekci 13: "Technické parametry" na stránce 133.

Použijte vhodné filtry pro napájení přístroje v blízkosti vysokofrekvenčních generátorů nebo svářecích strojů.

Vedle síťové kabely odděleně od signálových vodičů.

Pokud je na svorkách napájecího napětí velké rušení z přepínaců nebo tyristorových měničů pro řízení motorů:
- Doplňte 9163 samostatným izolačním transformátorem s uzemněným stíněním.

Pokud má hlavní zdroj silné výkyvy napětí:
- Nainstalujte stabilizátor napětí.
3.2 Stolní jednotka

Varování
Možnost úrazu elektrickým proudem!

Externí řídící obvody připojené k přístroji musí mít třídu ochrany II.

Poznámka:
Všechny kondenzátory musí vyhovovat standartu VDE (třída x2) a schopné vydržet minimálně 230 VAC. Maximální odporové ztráty kondenzátoru musí být minimálně rovny 2 W.

Poznámka:
Společnost burster prázisionsmesstechnik gmbh & co kg nenes za žádných okolností odpovědnost za zranění osob nebo škody na majetku vzniklém po neodborném zásahu, nesprávném použití nebo použití, které není přítomno v operačním manuálu.

Následujte tyto instrukce při zapojování jednotky:
- Umístěte vstupní svorky odděleně od napájecích kabelů a od výkonových výstupů přístroje.
- Použijte kroucené kabely se stíčením minimálně na jedné straně.
- Pro výstupní vedení, které je propojeno se zátěží (stykače, solenoidevé ventily, motory, ventilátory, atd.) připojte RC článek paralelně se zátěží.
- Tímto způsobem snížíte vyzařované rušení.
- Pro indukční zátěž připojte diodu typu 1N4007 paralelně k zátěži.

Analogové výstupy / digitální vstupy / digitální výstupy

<table>
<thead>
<tr>
<th>Pin</th>
<th>Připojení</th>
<th>Pin</th>
<th>Připojení</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+ analogového výstupu</td>
<td>8</td>
<td>+ OUT1</td>
</tr>
<tr>
<td>2</td>
<td>- analogového výstupu, referenční zem</td>
<td>9</td>
<td>+ OUT2</td>
</tr>
<tr>
<td>3</td>
<td>+ digitálního vstupu 1</td>
<td>10</td>
<td>+ OUT3</td>
</tr>
<tr>
<td>4</td>
<td>+ digitálního vstupu 2</td>
<td>11</td>
<td>+ OUT4</td>
</tr>
<tr>
<td>5</td>
<td>- digitálních vstupů, referenční zem</td>
<td>12</td>
<td>Nepoužité</td>
</tr>
<tr>
<td>6</td>
<td>nepoužité</td>
<td>13</td>
<td>- referenční zem</td>
</tr>
<tr>
<td>7</td>
<td>nepoužité</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Snímač 1 (IN1) a Snímač 2 (IN2)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Připojení</th>
<th>Pin</th>
<th>Připojení</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+ buzení snímače 5 / 10 V</td>
<td>5</td>
<td>Referenční zem pro 5 / 10 V</td>
</tr>
<tr>
<td>2</td>
<td>CAL / RTD</td>
<td>6</td>
<td>+ signál</td>
</tr>
<tr>
<td>3</td>
<td>+ buzení vysílače 15 / 24 V</td>
<td>8</td>
<td>ref. zem pro 15 / 24 V / signal</td>
</tr>
<tr>
<td>4</td>
<td>CAL / RTD</td>
<td>9</td>
<td>- signál</td>
</tr>
</tbody>
</table>
Digital měřidlo
Model 9163

Snímač 3 / 4 (IN3 / IN4)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Příručení</th>
<th>Pin</th>
<th>Příručení</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+ buzení snímače 5 / 10 V</td>
<td>6</td>
<td>+ IN3 signálu</td>
</tr>
<tr>
<td>3</td>
<td>+ buzení vysílače 15 / 24 V</td>
<td>8</td>
<td>ref. zem pro 15 / 24 V / signál</td>
</tr>
<tr>
<td>5</td>
<td>Referenční zem pro 5 / 10 V</td>
<td>9</td>
<td>+ IN4 signálu</td>
</tr>
</tbody>
</table>

Pohled k zadní straně méřidla

Kabel pro propojení standardních snímačů do přídavných kanálů přístroje (Snímač 3 / 4)

<table>
<thead>
<tr>
<th>Plug</th>
<th>Příručení</th>
<th>Snímač</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>+ buzení snímače 15 / 24 V</td>
<td>1 / 2</td>
</tr>
<tr>
<td>6</td>
<td>+ IN3 signálu</td>
<td>6 (IN3)</td>
</tr>
<tr>
<td>8</td>
<td>Referenční zem pro 15 V / 24 V / signál</td>
<td>4 / 5 / 9</td>
</tr>
<tr>
<td>9</td>
<td>+ IN4 signálu</td>
<td>6 (IN4 9</td>
</tr>
</tbody>
</table>

Kabel adaptéru model A

<table>
<thead>
<tr>
<th>Plug</th>
<th>Příručení</th>
<th>Snímač</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+ buzení snímače 5 V / 10 V</td>
<td>1 / 2</td>
</tr>
<tr>
<td>5 / 8</td>
<td>Referenční zem pro 5 V / 10 V / signál</td>
<td>4 / 5 / 9</td>
</tr>
<tr>
<td>6</td>
<td>+ IN3 signál</td>
<td>6 (IN3)</td>
</tr>
<tr>
<td>9</td>
<td>+ IN4 signál</td>
<td>6 (IN4)</td>
</tr>
</tbody>
</table>

Kabel adaptéru model B

Volitelná RS232

<table>
<thead>
<tr>
<th>Pin</th>
<th>Příručení</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Tx</td>
</tr>
<tr>
<td>3</td>
<td>Rx</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
</tbody>
</table>

Pohled k zadní straně méřidla

Volitelná RS485

<table>
<thead>
<tr>
<th>Pin</th>
<th>Příručení</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- Rx</td>
</tr>
<tr>
<td>4</td>
<td>- Tx</td>
</tr>
<tr>
<td>6</td>
<td>+ Tx</td>
</tr>
<tr>
<td>9</td>
<td>+ Rx</td>
</tr>
</tbody>
</table>
3.2.2 Propojení

Norování
Možnost úrazu elektrickým proudem!

Externí řídící obvody připojené k přístroji musí mít třídu ochrany II.

Poznámka:
Všechny kondenzátory musí vyhovovat standartu VDE (třída x2) a schopné vydržet minimálně 230 VAC. Maximální odporové ztráty kondenzátoru musí být minimálně rovny 2 W.

Poznámka:
Společnost burster prázíonsmeasstechnik gmbh & co kg nenesja za žádných okolností odpovědnost za zranění osob nebo škody na majetku vzniklé po neodborném zásahu, nesprávném použití nebo použití, které není přitomno v operačním manuálu.

Následujte tyto instrukce při zapojování jednotky:
- Umístěte vstupní svorky odděleně od napájecích kabelů a od výkonových výstupů přístroje.
- Použijte kroucené kabely se stíněním minimálně na jedné straně.
- Pro výstupní vedení, které je propojeno se zátěži (stykače, solenoidové ventily, motory, ventilátory, atd.) připojte RC článk paralelně se zátěži.
- Tímto způsobem snížíte vyzařované rušení.
- Pro indukční zátěž připojte dioidu typu 1N4007 paralelně k zátěži.

Vstup IN1 / IN2 tenzometrický snímač, 4-vodičově

Pohled k zadní straně měřidla

Vstup IN1 / IN2 TC – termočlánek

Můžete propojit termočlánek typu J, K, R, S a T.
Můžete připojit termočlánky typu B, E, N, L, U, G, D a C společně s provedením linearizace.
- Ujistěte se, že jste připojili správně polaritu termočlánku.
- Použijte vhodné prodlužovací vedení pro prodloužení přívodů.
Můžete připojit termočlánky typu J, K, R, S a T.
Digital měřidlo Model 9163

Vstup IN1 / IN2 připojen třivodičový k snímači s napájením z měřící jednotky

Typ snímače záleží na vybraném vysílači.

Vstup IN1 / IN2 připojen dvouvodičový k snímači s napájením z měřící jednotky

Připojení potenciometru
Poznámka:
Přiřazení pinů pro připojení potenciometru se liší mezi jedno (single) a dvou (two) kanálovým přístrojem.

Vstup IN1 / IN2 (napětí)
Tento vstup je použitelný pro lineární DC napěťové signály

Vstup IN1 / IN2 (proud)
Tento vstup je použitelný pro lineární DC signály proudu.

Napětí	Výstupní impedance
±60 mV | >10 MΩ
±100 mV | >10 MΩ
±1.0 V | >2 MΩ
±5.0 V | >2 MΩ
±10.0 V | >2 MΩ

Rozsah proudu	Výstupní impedance
0/4 mA to 20 mA | 50 Ω
Vstup IN1 / IN2 PT100

![2-wire connection diagram](image)

Pohled k zadní straně měřidla

Vstupy IN3 / IN4 připojené tři-vodičově k snímači s napájením z měřicí jednotky

![3-wire connection diagram](image)

Pohled k zadní straně měřidla

Poznámka:
Použijte pouze vodiče s průřezem > 1 mm².

Vstupy IN3 a IN4 (proud)

![Connection diagram IN3 and IN4](image)

Pohled k zadní straně měřidla

Vstupy IN3 a IN4 (napětí)

![Connection diagram IN3 and IN4 (voltage)](image)

Pohled k zadní straně měřidla

Vstupy IN3 a IN4 potenciometr

![Connection diagram IN3 and IN4 (potentiometer)](image)

Pohled k zadní straně měřidla

Vstupy IN3 / IN4 dvou-vodičově připojené k snímači s napájením z měřicí jednotky

![Connection diagram IN3 and IN4 (two-wire)](image)

Pohled k zadní straně měřidla
Digital měřidlo Model 9163

Připojení k analogovým výstupům

<table>
<thead>
<tr>
<th>Analog-Out</th>
<th>Digital-In</th>
<th>Digital-Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Reference ground analog output**
- **Analog output**

Pohled k zadní straně měřidla

Máte na výběr následující nastavení:

- 0 – 10 V, 2 – 10 V, ±10 V, max. 25 mA proti-zkratová ochrana
- 0 – 20 mA, 4 – 20 mA pro maximální zatížení 500 Ω

Použijte konfigurační parametry pro nastavení typu.

Digitální vstupy DI1 a DI2

<table>
<thead>
<tr>
<th>Analog-Out</th>
<th>Digital-In</th>
<th>Digital-Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **COM**
- **DI2**
- **DI1**

Pohled k zadní straně měřidla

Digitální vstupy (PNP): 24V, maximum 5 mA (tovární nastavení).

Izolovaný kontakt (NPN): maximum 5 mA (Hd1).

Použijte parametry dříve, v menu **H** k povolení digitálních vstupů DI1 a DI2.

Podrobnější informace najdete v sekci 10.3.4: "Digitální vstupy" na stránce 107.

Výstupy OUT1, OUT2, OUT3 a OUT4

<table>
<thead>
<tr>
<th>Analog-Out</th>
<th>Digital-In</th>
<th>Digital-Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pohled k zadní straně měřidla

Relé: 5 A, 250 V AC / 30 V DC

Digital měřidlo Model 9163

Sériové rozhraní / MODBUS: RS232

1. **GND**
2. **Tx**
3. **Rx**

Pohled k zadní straně měřidla

Sériové rozhraní / MODBUS: RS485 2-vodičové (standard):

1. **GND**
2. **A (data +)**
3. **B (data -)**

<table>
<thead>
<tr>
<th>Analog-Out</th>
<th>Digital-In</th>
<th>Digital-Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pohled k zadní straně měřidla

Varování

Pokud je připojené napájení dostanete zásah elektrickým proudem.

Odpojte napájecí napájení od přístroje před jeho otevřením.

120 Ω terminální odpory mohou být připojeny:

Zkratováním propojky S3, rozpojením S2.

Polarizace může být vybrána pomocí:

Zkratováním propojky S4 (S6,S7,S9 zkratovány; S8 rozpojen)

Varování

Pokud je připojené napájení dostanete zásah elektrickým proudem.

Odpojte napájecí napájení od přístroje před jeho otevřením.

120 Ω terminální odpory mohou být připojeny:

Zkratováním propojky S3, rozpojením S2.

Polarizace může být vybrána pomocí:

Zkratováním propojky S4 (S6,S7,S9 zkratovány; S8 rozpojen)
Digital měřidlo
Model 9163

Sériové rozhraní / MODBUS: RS485 4-vodičové

![Schematic Diagram]

4. Ovládání

Všechny ovládací prvky jsou v jedné skupině na předním panelu měřidla (Stupeň ochrany: IP54).

![Front Panel Diagram]

Table 2: Uživatelské rozhraní

<table>
<thead>
<tr>
<th>No.</th>
<th>Popis</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PV display (Process Value display)</td>
<td>Zobrazení aktuální hodnoty, názvu menu, názvu parametru, chybové hlášky.</td>
</tr>
<tr>
<td>2</td>
<td>Sub-display</td>
<td>Zobrazi hodnotu indexu pro procesní hodnotu zobrazenou na PV display; jednotky jsou určeny při specifikaci.</td>
</tr>
<tr>
<td>3</td>
<td>Kurzorové tlačítko ▲▼</td>
<td>Zvyšuje/snižuje hodnotu parametru až do maximální/minimální hodnoty. Držením tlačítka zvýšujete rychlost změny zobrazené hodnoty.</td>
</tr>
<tr>
<td></td>
<td>[F] tlačítko</td>
<td>Přepíná mezi rozdílnými menu a parametry. Potvrzuje současné hodnoty nastavení (nebo modifikuje hodnoty parametrů) a otevírá další parametry.</td>
</tr>
<tr>
<td></td>
<td>[PEAK] tlačítko</td>
<td>Povolí maximální špičkovou hodnotu pro vstup IN1 (tovární nastavení). Tyto funkce jsou přístupné pokud je na displeji zobrazena aktuální hodnota v leželi 1 (pro konfiguraci 22 22, 33 33 v menu HRD).</td>
</tr>
<tr>
<td></td>
<td>[CAL RST] tlačítko</td>
<td>Zkontroluje kalibraci tenzometru pro kanál IN1 (tovární nastavení).</td>
</tr>
<tr>
<td></td>
<td>[*] tlačítko</td>
<td>Nulování (tovární nastavení).</td>
</tr>
<tr>
<td></td>
<td>[F]+[*] tlačítko</td>
<td>Potvrďte současné hodnoty parametrů (nebo změňte hodnotu parametru pomocí tlačítek ▲▼) a otevřete předchozí parametr.</td>
</tr>
<tr>
<td>4</td>
<td>AL1 až AL4</td>
<td>Stavový display pro limity alarmů: ON (rozsvícen), OFF (nerozsvícen)</td>
</tr>
<tr>
<td>5</td>
<td>L1 až L4</td>
<td>Displej stavu pro funkce; pro konfiguraci nastavte parametry LEd. 1, LEd.2, LEd.3, LEd.4 v menu HRD</td>
</tr>
<tr>
<td></td>
<td>L1 = ON</td>
<td>Zobrazení maximální hodnoty IN1</td>
</tr>
<tr>
<td></td>
<td>L2 = ON</td>
<td>Monitor automatické kalibrace IN1</td>
</tr>
<tr>
<td></td>
<td>L3 = ON</td>
<td>(DI1 povolen) opakovaný DI1</td>
</tr>
<tr>
<td></td>
<td>L4 = ON</td>
<td>(DI2 povolen) opakovaný DI2</td>
</tr>
</tbody>
</table>

120 Ω ukončovací rezistory mohou být zapojeny u:

Zkratována propojka S3 (Tx), zkratována propojka S2 (Rx).
Polarizace linky pomocí Rx může být vybrána:
zkratován S4, S5 (S6, S7, S9 nepropojen; S8 propojen)

Warning!
Pokud je připojené napájení dostanete zásah elektrickým proudem. Odpojte napájecí napájení od přístroje před jeho otevřením.
5. Zapnutí přístroje

Optimální výkon přístroje záleží na konfiguraci a na správném nastavení řídících parametrů.

Všestrannosti a vysokého výkonu je dosaženo nastavováním velkého množství parametrů. Ty mohou být přimo nastaveny přes tlačítko na kontrolním panelu nebo stažením konfiguračních souborů pomocně softwaru DigiVision, pro který musíte mít volitelnou konfiguraci s rozhraním RS232.

Software DigiVision 9310-P101 vás nechá nastavit přístroj. Pro kontinuální měření a zaznamenávání je nutné koupit plnou verzi s označením 9163-P100.

5.1 Diagnostika přístroje (Self-diagnosis)

Přístroj obsahuje samostatnou kontrolu po zapnutí. Během tohoto testu všechny segmenty displeje svítí a 7 LED bliká.

Pokud přístroj úspěšně projede kontrolou, přepne se do operačního módu (Hlavní menu/level 1).

Pokud tento test identifikuje chybu je zobrazen chybový kód. Tato chyba je také uložena v parametru Err v menu INP.

Chybové kódy a jejich význam je uveden v sekci: 5.3 "Chyby během měřicího módu" na stránce 52.

5.2 Měřicí mód

Můžete přepínat mezi jednotlivými kanály a limity alarmu pomocí krátkého stisknutí tlačítka [F] pro zobrazení jejich hodnot na PV displeji. Ty jsou použity pro definici operace v hlavní nabídce přístroje.

Můžete použít tlačítka ▲ a ◄ pro zvýšení nebo snížení vybraného limitu do požadované hodnoty.

Držením tlačítka [F] po dobu 3 sekund se vrátíte do hlavní nabídky.

Můžete přepínat mezi hodnotami net a gross (hrubá) použitím klávesnice nebo digitálních vstupů. Pokud je zobrazena gross (hrubá) hodnota, desetinná čtečka vedle jednotky blinká.

Podrobnější informace můžete nalézt v sekci 6: "Základní obsluha" na stránce 53.

5.3 Chyby během měřicího módu

Pokud se během měření vyskytne chyba, na „PV“ displeji se zobrazí chybový kód.

Table 3: Chybové hlášení a jejich význam

<table>
<thead>
<tr>
<th>Chybový kód</th>
<th>význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lo Lo Lo Lo</td>
<td>Aktuální hodnota je menší než dolní hodnota stupnice (parametr LoS v menu INP)</td>
</tr>
<tr>
<td>Hi Hi Hi Hi</td>
<td>Aktuální hodnota je vyšší než horní hodnota stupnice (parametr Hi S v menu INP)</td>
</tr>
<tr>
<td>Err Err Err Err</td>
<td>Vstup je zkratován nebo je pod minimální či trh hodnotou (např. protože je termočlánek zapojen nesprávně) Snímač s výstupem 4…20 mA je špatný nebo není buzen.</td>
</tr>
<tr>
<td>Sbr Sbr Sbr Sbr</td>
<td>Chybný snímač nebo vstupní signál je větší než je horní hodnota stupnice.</td>
</tr>
<tr>
<td>Ebr Ebr Ebr Ebr</td>
<td>Senzor není napájen (tenzometr), senzor je vadný nebo není připojen.</td>
</tr>
<tr>
<td>Ebr Lo</td>
<td>Snímač není napájen.</td>
</tr>
<tr>
<td>Er End</td>
<td>Třetí vodič Pt100 je poškozen nebo není připojen.</td>
</tr>
<tr>
<td>E[.x]</td>
<td>Chyba kalibrace na vstupu x (x je číslo 1…4).</td>
</tr>
</tbody>
</table>

Podrobnější informace můžete nalézt v sekci 12.3 "Poradce při potížích" na stránce 132.
6. Základní obsluha

6.1 Přístup do specifických menu

- V hlavním menu držte stisknuté tlačítko [F].
 - Na PV displeji rolujte přes názvy povolených menu.
 - Povolená menu záleží na propojkách na procesorové desce a na nastavení zámků (lock) parametrů.
 - Pokud jste dosáhly požadovaného menu:
 - Uvolněte tlačítko [F].
 - Nyní jste v menu, které jste požadovali.

6.2 Přístupování parametrů v menu

Pokud jste na správném menu:

- Stiskněte (nedržte) tlačítko [F].
 - Tento způsob vás dostane do jednotlivých parametrů (možností) menu dokud se nedostanete k požadovanému parametru.
 - Displej se nyní přepíná mezi názvem parametru a jeho hodnotou.

6.3 Nastavování hodnoty parametru

Pokud jste dosáhly konkrétního parametru, na displeji se přepíná název parametru s jeho hodnotou.

- Držte jedno ze dvou tlačítek: ▲ nebo ▼.
 - Nyní displej ukazuje současnou hodnotu parametru, kterou nastavujete nahoru nebo dolů.
 - Přístroj začne z malými kroky (např. 1). Krok je automaticky zvýšen vynásobením deseti po průchodu deseti kroků. Z našeho příkladu je počáteční krok 1 následně se změní na 10, potom na 100, atd..

Pokud jste dosáhly požadované hodnoty parametru:

- Pro potvrzení stiskněte (ale nedržte) tlačítko [F].

Změna na nižší hodnotu kroku:

- Pusťte stisknuté tlačítko ▲ nebo ▼.
 - Displej nyní přepíná mezi hodnotou parametru a jeho názvem.
 - Počkejte do doby dokud nebyl aspoň jednou zobrazen název parametru.
 - Pokračujte v nastavování hodnoty parametru jako předtím.

Po dalších deseti změnách hodnoty se znovu přepne na vyšší krok.

6.4 Návrat do hlavního menu

- Stiskněte současně tlačítko [F] a [★].
 - Nyní jste přímo navráčeny do hlavního menu.
6.5 Hierarchie menu

6.5.1 Úroveň 1

Measurement mode

Hold down [F] button → Main menu

Input 1

Input 2

Input 3

Input 4

Mathematical function A

Mathematical function B

Limit 1

[L, R,..., H, RL] Absolute only

Limit 2

[L, R,..., H, RL] if absolute
-9999...9999 if relative

Limit 3

[L, R,..., H, RL] if absolute
-9999...9999 if relative

Limit 4

[L, R,..., H, RL] if absolute
-9999...9999 if relative

Figure 10: Diagram zobrazuje strukturu úrovně 1

6.5.2 Hlavní menu

Information display

Jumper 99 on CPU-card
(see Chapter 6 - Maintenance)

Serial interface

Configuration of Input 1

Configuration of Input 2

Configuration of Input 3

Configuration of Input 4

Configuration of Limits

Configuration of Outputs

Password

PAS = 99 ?

- Enter 99 without pressing [F] button
- To access Parameter PRO, press [F] button once
- To access next menu, press and hold down [F] button

Parameter lock

Hardware configuration

Input linearization

Custom calibration

Figure 11: Hlavní menu

Poznámka:
7. Získání informací o současném statusu

7.1 Zobrazení verze software

- Přepněte se z hlavního menu do menu `Inf`.
 Pro docílení tohoto držte tlačítko [F] dokud se nezobrazí `Inf`.

- Stiskněte krátké jednou tlačítko [F].
 Nyní jste na paramtru `Upd`.

Displej se nyní přepíná mezi názvem parametru "Upd" a verzí software.

7.2 Zobrazení kódu zařízení

- Přepněte se z hlavního menu do menu `Inf`.
 Pro docílení tohoto držte tlačítko [F] dokud se nezobrazí `Inf`.

- Přejděte na parametr `Cod`.
 Pro docílení tohoto několikrát stiskněte tlačítko [F] dokud se nezobrazí `Cod`.

Displej se nyní přepíná mezi názvem parametru "Cod" a kódem zařízení.

7.3 Zobrazení chybového kódu pro určitý vstup

- Přepněte se z hlavního menu do menu `Inf`.
 Pro docílení tohoto držte tlačítko [F] dokud se nezobrazí `Inf`.

- Jděte do odpovídajícího parametru `Err`.
 Pro docílení tohoto několikrát stiskněte tlačítko [F], dokud se nezobrazí `Err`.

Menu `Inf` obsahuje parametry pojmenované `Err1` až `Err4`, takto uchovává informace o chybových hlášeních pro čtyři vstupy.

Chybové hlášení pro matematické funkce Fin.A a Fin.b jsou uchovávány v parametrech `Err5` a `Err6`.

Podrobnější informace o funkcích Fin.A a Fin.b naleznete v sekci 10.3.1: "Matematické funkce" na stránce 97.

Nyní se displej přepíná mezi názvem parametru "Err" a jedním z chybových kódů, které jsou uvedeny v následující tabulce.
Chybový kód Význam

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Žádná chyba na toto vstupu.</td>
</tr>
<tr>
<td>1</td>
<td>Aktuální hodnota vstupu je nižší než dolní mez stupnice (parametr LoS v menu INP).</td>
</tr>
<tr>
<td>2</td>
<td>Aktuální hodnota vstupu je vyšší než horní mez stupnice (parametr Hi S v menu INP).</td>
</tr>
<tr>
<td>3</td>
<td>Vstup je zkratován nebo je načítána hodnota vstupu pod minimální hodnotou (např. nesprávně zapojený termočlánek). Snímač s výstupem 4 ... 20 mA je vadný nebo není buzen.</td>
</tr>
<tr>
<td>4</td>
<td>Vodný snímač nebo vstupní signál je vyšší než je horní mez stupnice.</td>
</tr>
<tr>
<td>5</td>
<td>Snímač není buzen (tenzometr), protože je snímač vadný nebo nepřipojený.</td>
</tr>
<tr>
<td>6</td>
<td>Snímač není napájen.</td>
</tr>
<tr>
<td>7</td>
<td>Třetí vodič snímače Pt100 je poškozen nebo není připojen.</td>
</tr>
<tr>
<td>8</td>
<td>Chyba při kalibraci na vstupu X (X je číslo 1…4).</td>
</tr>
</tbody>
</table>

7.4 Zobrazení pozice desetinné tečky

- Přepněte se z hlavního menu do menu l nF.

 Pro docílení tohoto držte tlačítko [F] dokud se nezobrazí l nF.

- Přejděte k parametru dPS.5.

 Pro docílení tohoto několikrát stiskněte tlačítko [F], dokud není zobrazeno dPS.5.

- Přejděte k parametru Hi S.5.

 Pro docílení tohoto stiskněte tlačítko [F], dokud se nezobrazí Hi S.5i.

- Přepněte na parametr Hi S.6.

 Toho docílíte stiskem tlačítku [F].

Stiskněte tlačítko [F].

Nyní jste na parametru dPS.6.

- Přepněte na parametr dPS.6.

 Tento parametr obsahuje pozici desetinné tečky při matematických operacích funkce Fin.A.

- Přepněte na parametr Hi S.5.

 Tento parametr obsahuje horní mez stupnice pro matematickou funkci Fin.A.

- Přepněte na parametr Hi S.6.

 Tento parametr obsahuje horní mez stupnice pro matematickou funkci Fin.b.

Podrobnější informace o matematických funkcích Fin.A a Fin.b naleznete v sekci 10.3.1: "Matematické funkce" na stránce 97.

7.5 Zobrazení hodnot stupnice

- Přepněte se z hlavního menu do menu l nF.

 Pro docílení tohoto držte tlačítko [F] dokud se nezobrazí l nF.

- Přejděte k parametru LoS.5.

 Pro docílení tohoto několikrát stiskněte tlačítko [F], dokud se nezobrazí LoS.5i.

- Přepněte na parametr LoS.6.

 Tento parametr obsahuje dolní mez stupnice pro matematickou funkci Fin.A.

- Přepněte na parametr Hi S.5.

 Tento parametr obsahuje dolní mez stupnice pro matematickou funkci Fin.b.

- Přepněte na parametr Hi S.6.

 Tento parametr obsahuje dolní mez stupnice pro matematickou funkci Fin.b.

Podrobnější informace o matematických funkcích Fin.A a Fin.b naleznete v sekci 10.3.1: "Matematické funkce" na stránce 97.
8. Nastavení vstupů a výstupů

Menu pokrčeje nastavení a parametrisace přístroje 9163 digitální indikátor obsahuje parametry pomocí, kterých můžete nastavit nejménější body měření. To znamená, že přístroj dokáže uspokojit požadavky prakticky pro každou aplikaci.

Varování

Varování před zraněním nebo poškozením majetku!

Ujistěte se, že všechny nastavené parametry jsou správné před začátkem měření.

Následující stránky obsahují informace o rozličných menu přístroje 9163. Každý parametr je doprovázen detailním vysvětlením jeho funkce, jeho defaultní hodnoty a limitních hodnot, které můžete dosahovat.

Poznámka:

Odkazujte se na hodnoty v tabulce, když nastavujete parametry. Pro některé parametry musíte také přidat hodnotu pro docílení požadovaných funkcí.

8.1 Nastavení vstupů

8.1.1 Nastavení hlavního vstupu

Můžete nastavit dva hlavní vstupy na přístroje 9163 v menu a . Obě menu mají identickou strukturu a stejné nastavení. Každé menu obsahuje nastavení pro jeden hlavní vstup.

- Přepněte se z hlavního menu do příslušné položky (nebo).

 Pro docílení tohoto držte tlačítko [F] dokud se nezobrazí nebo .

 Nyní jste na parametru

- Jednou stiskněte tlačítko [F].

 Nyní jste na parametru

- Nastavte specifický snimač pro tento vstup vložením třídy snimače.
Následující typy snímačů jsou možné:

<table>
<thead>
<tr>
<th>Třída</th>
<th>Typ snímače</th>
<th>Hodnota stupnice</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Vstup odpojen</td>
<td>0 / 1000</td>
</tr>
<tr>
<td>1</td>
<td>TC J °C</td>
<td>32 / 1832</td>
</tr>
<tr>
<td>2</td>
<td>TC K °C</td>
<td>32 / 2372</td>
</tr>
<tr>
<td>3</td>
<td>TC R °C</td>
<td>32 / 2372</td>
</tr>
<tr>
<td>4</td>
<td>TC S °C</td>
<td>32 / 2372</td>
</tr>
<tr>
<td>5</td>
<td>TC °C</td>
<td>32 / 2372</td>
</tr>
<tr>
<td>6</td>
<td>TC °F</td>
<td>32 / 2372</td>
</tr>
<tr>
<td>7</td>
<td>TC °C</td>
<td>32 / 2372</td>
</tr>
<tr>
<td>8</td>
<td>TC °F</td>
<td>32 / 2372</td>
</tr>
<tr>
<td>9</td>
<td>TC °C</td>
<td>32 / 2372</td>
</tr>
<tr>
<td>10</td>
<td>TC °F</td>
<td>32 / 2372</td>
</tr>
<tr>
<td>11</td>
<td>PT100 °C</td>
<td>32 / 1562</td>
</tr>
<tr>
<td>12</td>
<td>PT100 °F</td>
<td>32 / 1562</td>
</tr>
<tr>
<td>13</td>
<td>Potenciometr z100 Ω, napájecí napětí 2.5 V</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>14</td>
<td>Tenzometrický snímač s pozitivní polarizací. Cílitvost: 1.5 až 4 mV/V</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>15</td>
<td>Tenzometrický snímač se symetrickou polarizací. Cílitvost: 1.5 až 4 mV/V</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>16</td>
<td>60 mV</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>17</td>
<td>±60 mV</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>18</td>
<td>100 mV</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>19</td>
<td>±100 mV</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>20</td>
<td>1 V</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>21</td>
<td>±1 V</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>22</td>
<td>5 V</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>23</td>
<td>±5 V</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>24</td>
<td>10 V</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>25</td>
<td>±10 V</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>26</td>
<td>0 až 20 mA</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>27</td>
<td>Nepoužívejte!</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Tenzometrický snímač, pozitivní polarita, kalibrovaný, 40mV</td>
<td>-19999 / 99999</td>
</tr>
</tbody>
</table>

Přidavné funkce:
- +32 pro specifickou lineárizaci snímače.
- +64 pro termočlánky s externím kompenzačním článkem.

Poznámka:
Můžete použít třídě 28 a 29 bez kalibrace snímače. Nastavte požadované parametry pro offset a cílitvost.

Pro třídy 28 a 29 napájecí napětí 10 V souvisí s maximální citlivostí 4 mV/V.

Jakmile nastavíte třídu snímače:

- Stiskněte tlačítko [F].

Displej nyní zobrazuje parametr F іν.

Tento parametr nastavuje digitální filtr týkající se nastavovaného vstupu.

Rozsah hodnot filtru je od 0,00 do 20,00 sekund.

Poznámka:
Digitální filtr je F іν filtr displeje, to znamená, že ovlivňuje displej.

Poznámka
Pro vyprůmí digitálního filtru nastavte hodnotu na "0".

Pokud jste nastavili digitální filtr:

- Stiskněte tlačítko [F].

Nyní jste na parametru dPS.

Tento parametr je použit pro nastavení pozice desetinné čárky.
Pokud jste nastavily parametry typu k senzoru třídy "28" nebo "29", nyní můžete specifikovat citlivost a offset.

Jinak přeskočte tyto kroky.

Nyní jste dospěli k parametru S6OF (offset) (jen pro typy snímačů "28" a "29").

- Nyní nastavte offset.
 Ten může ležet mezi hodnotami -9.999 a +9.999 mV.

Pokud jste udělali nastavení:
- Pro potvrzení stiskněte tlačítko [F].

Nyní jste nastavili dolní a horní mez stupnice.

Pokud jste nastavili dolní mez stupnice:
- Stiskněte tlačítko [F].
- Opakujte tuto proceduru pro nastavení horní mez stupnice.

Pokud jste nastavili dolní mez stupnice:
- Stiskněte tlačítko [F].
- Opakujte tuto proceduru pro nastavení horní mez stupnice.

Nyní jste nastavili dolní mez stupnice a vy jste nyní zpět v hlavním menu.
8.1.2 Nastavení pomocného vstupu

Nastavte pomocné vstupy digitálního měřidla použitím menu \(\text{lnP}_1\) a \(\text{lnP}_4\). Obě menu mají identickou strukturu a stejné nastavení. Každé menu obsahuje nastavení pro pomocný vstup.

- Přepněte se z hlavního menu do požadovaného konfiguračního menu \(\text{lnP}_3\) nebo \(\text{lnP}_4\).
 Pro docílení tohoto držte tlačítko [F] dokud se nezobrazí \(\text{lnP}_3\) nebo \(\text{lnP}_4\).

- Jednou stiskněte tlačítko [F].
 Nyní jste na parametru \(\text{typ}\).

- Nastavte specifický typ snímače pro vstup vložením třídy snímače.
 Následující typy snímačů jsou podporovány:

<table>
<thead>
<tr>
<th>Třída</th>
<th>Typ snímače</th>
<th>Hodnota rozsahu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Vstup odpojen</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 až 10 V</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>2</td>
<td>0 až 20 mA</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>3</td>
<td>Nepoužívejte!</td>
<td>-19999 / 99999</td>
</tr>
<tr>
<td>4</td>
<td>Potenciometr</td>
<td>-19999 / 99999</td>
</tr>
</tbody>
</table>

Přídavné funkce:
- \(+32\) Pro uživatelskou lineárizaci.

Pokud jste nastavili typ snímače:

- Stiskněte tlačítko [F].
 Displej nyní zobrazuje parametr \(\text{F tě.}\).
Použijte tento parametr pro nastavení digitálního filtru pro zamýšlený vstup.
Můžete nastavit rozsah digitálního filtru mezi 0.00 a 20.00 sekundami.

Poznámka:
Digitální filtr \(F \) je filtr displeje, to znamená ovlivňuje displej.

Pro zakázání filtru nastavte "0".
Pokud jste nastavili digitální filtr:
- Stiskněte tlačítko \([F]\).
 Nyní jste na parametru \(dPS \).

Tento parametr je použit pro nastavení pozice desetinné čárky.

Pokud jste nastavili pozici desetinné čárky:
- Pokračujte nastavením dolní a horní meze stupnice.

Pro termočlánky jsou dostupné pouze nastavení "0" a "1".

<table>
<thead>
<tr>
<th>Kód</th>
<th>Formát</th>
<th>Přídavné funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0 0</td>
<td>+8 vypnutí zpráv (Lo) a (Hi).</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 0 0,</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0 0 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

Přídavné funkce:
- +8 vypnutí zpráv \(Lo \) a \(Hi \).

Pokud jste nastavili pozici desetinné čárky:
- Pokračujte nastavením dolní a horní meze stupnice.
 Pro docílení hotovo stiskněte tlačítko \([F]\).

Nastavte dolní meze stupnice.

Pokud jste nastavili dolní meze stupnice:
8.2 Výstupy

8.2.1 Určení parametrů výstupů

Následujte tyto korky:

- Otevřete menu \(\text{Out} \).

Pro docílení tohoto držte tlačítko [F], dokud se nezobrazí \(\text{Out} \).

- Stiskněte tlačítko [F].

- displej nyní ukazuje \(\text{RL} \).

Použijte tento parametr pro výběr referenčního signálu pro limit alarmu výstupu 1.

- To je provedeno pomocí vložení následujících kódů.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>vypnuto</td>
</tr>
<tr>
<td>1</td>
<td>Limit 1 (AL1)</td>
</tr>
<tr>
<td>2</td>
<td>Limit 2 (AL2)</td>
</tr>
<tr>
<td>3</td>
<td>Limit 3 (AL3)</td>
</tr>
<tr>
<td>4</td>
<td>Limit 4 (AL4)</td>
</tr>
<tr>
<td>5</td>
<td>Kopírovat logický vstup 1</td>
</tr>
<tr>
<td>6</td>
<td>Kopírovat logický vstup 2</td>
</tr>
<tr>
<td>7</td>
<td>Kopírovat tlačítko (\text{bUK}). (([\ast]))</td>
</tr>
</tbody>
</table>

Přidavné funkce:

- +32 invertování zamýšleného výstupu.

- Pro potvrzení vložení kódu stiskněte tlačítko [F].

Toto vás vezme do parametru pro výstup 2 až 4 (parametry \(\text{RL} \). \text{Z} to \(\text{RL} \). \text{H}).

- Opakujte proceduru pro výběr referenčního signálu pro tyto výstupy.

Pokud jste specifikovali parametr \(\text{RL} \). \text{H} , referenční signál pro limit alarmu 4, pokračujete parametrem \(\text{Typ} \).
8.2.2 Výběr analogového výstupu

- Otevřete menu \(\text{Out} \).

 Tohoto je docíleno pomocí držení tlačítka \(\text{F} \) dokud se nezobrazí \(\text{Out} \).

- Několikrát stiskněte tlačítko \(\text{F} \) dokud se nezobrazí \(\text{Typ} \).

- Následující parametr použijte pro nastavení typu analogového výstupu (OUT W).

<table>
<thead>
<tr>
<th>Kód</th>
<th>Formát</th>
<th>Přídavné funkce:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Výstup vypnutý</td>
<td>+8 pro invertování.</td>
</tr>
<tr>
<td>1</td>
<td>0 až 10 V</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 až 10 V</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 až 20 mA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 až 20 mA</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>±10 V</td>
<td></td>
</tr>
</tbody>
</table>

- Pro potvrzení výstupu stiskněte tlačítko \(\text{F} \).

 Displej nyní zobrazuje parametr \(\text{Typ} \).

- Použijte tento parametr pro specifikování dolní mezě stupnice pro analogové výstupy.
- Vložte dolní hodnotu stupnice pro analogové výstupy.
- Pro potvrzení hodnoty stiskněte tlačítko \(\text{F} \).
- Pro specifikování horní mezě stupnice použijte parametr \(\text{Hi} \).
- Pro potvrzení hodnoty stiskněte tlačítko \(\text{F} \).

 Nyní jste v posledním konfiguračním kroku, vybuzení snímače \(\text{RLS} \).
8.2.3 Vyberte buzení snímače

- Otevřete menu \textit{Out}.

 Pro provedení tohoto držte tlačítko [F] dokud se nezobrazí \textit{Out}.

- Stiskněte několikrát tlačítko [F] do doby než se zobrazí \textit{ALS}.

- Vyberte typ buzení snímače.

 Jsou možné následující druhy:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Buzení snímače</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.5 V pro potenciometry (pouze pro vstup IN1)</td>
</tr>
<tr>
<td>1</td>
<td>5 V tenzométrie snímače</td>
</tr>
<tr>
<td>2</td>
<td>10 V tenzométrie snímače</td>
</tr>
</tbody>
</table>

Maximální výstupní proud je 200 mA.

- Pro potvrzení výběru stiskněte tlačítko [F].

Tímto dokončete konfiguraci výstupů. Nyní jste zpět v hlavním menu.

8.2.4 Výběr budícího napětí snímače mezi 15 V / 24 V

- Upozornění!

 Pokud je připojené napájecí napětí dostanete elektrický šok!
 Odpojte napájecí napětí před otevřením krytu zařízení.

- Varování

 Riziko poškození elektrostatickým napětím!
 Učtěte potřebná opatření pro práci s deskou.

Výběr napájecího napětí snímačů se provádí pomocí propojek na desce CPU.

Figure 15: Výběr napájecího napětí snímačů mezi 15 V / 24 V
8.2.5 Jemné nastavení analogového výstupu

Poznámka:
Následujícím způsobem máte možnost přerušit proceduru jemného nastavení analogového výstupu pomocí parametru \textit{CAL}. Pro přerušení tohoto procesu držte současně tlačítka \textbullet{} + [F]. Jste přesunuti na parametr \textit{U.CAL}.

- Nejprve jděte do menu \textit{PAS}.
 Pro provedení tohoto držte tlačítko [F] dokud se nezobrazí \textit{PAS}.

- Použijte tlačítka ▲ nebo ▼ pro nastavení hodnoty "99".
 Po nastavení hodnoty získáte přístup do chráněné oblasti.

- Držte tlačítko [F] dokud se nezobrazí \textit{U.CAL}.

- Vložte číslo "7".
 Pro potvrzení volby stiskněte tlačítko [F].
 Nyní jste na parametru \textit{CAL}.

- Vložte minimální hodnotu.
 Pro nastavení hodnoty použijte tlačítka ▲ a ▼.
 Pro potvrzení volby stiskněte tlačítko [F].
 Displej nyní zobrazuje parametr \textit{CAH}.

- Vložte maximální hodnotu.
 Pro nastavení hodnoty použijte tlačítka ▲ a ▼.
 Pro potvrzení hodnoty stiskněte tlačítko [F].
 Tímto jste dokončili jemné nastavení analogového výstupu.
8.3 Nastavení sériového rozhraní

Pro nastavení sériového rozhraní pro přenos dat je použito Menu ŠEr.

- Přepněte se z hlavního menu do menu ŠEr.

 Pro dosazení tohoto držte tlačítko [F] dokud se nezobrazí ŠEr.

- Stiskněte tlačítko [F].

 Nyní se zobrazí parametr Cod.

- Stiskněte tlačítko [F].

 Tento parametr slouží pro nastavení adresy. Možné nastavení je v rozsahu "0" až "247".

- Nastavte požadovanou adresu.

- Stiskněte tlačítko [F].

 Nyní se zobrazí parametr bAv.

- Stiskněte tlačítko [F].

 Tady se nastavuje baud rate pro přenos dat.

 Dostupné jsou následující volby:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Baud rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 200</td>
</tr>
<tr>
<td>1</td>
<td>2 400</td>
</tr>
<tr>
<td>2</td>
<td>4 800</td>
</tr>
<tr>
<td>3</td>
<td>9 600</td>
</tr>
<tr>
<td>4</td>
<td>19 200</td>
</tr>
<tr>
<td>5</td>
<td>38 400</td>
</tr>
<tr>
<td>6</td>
<td>57 600</td>
</tr>
<tr>
<td>7</td>
<td>115 200</td>
</tr>
</tbody>
</table>

- Stiskněte tlačítko [F].

8.4 Rozhraní Profibus (Pouze přístroje s volitelným Profibusem)

Samostatný manuál s Profibusem obsahuje informace o Profibusu.
9. Nastavení limitů alarmů

Poznámka:
Pokud je více alarmů (mají přiřazeny pole znaků) spouštěno souběžně, limit alarmu s nejnižším číslem má prioritu (AL1 = nejvyšší priorit; AL4 = nejnižší priorit).

Absolutní limit

Pro AL1, je nastaven inverzní absolutní limit (aktivní pokud je signál nižší než mez) s pozitivní hysterezí $H_1, L_1, I = 1(*) = 0$. Limit je vypnutý během fáze zapínání přístroje.

Pro AL2, přímí absolutní limit (aktivní pokud je signál větší než mez) s negativní hysterezí $H_2, L_2 = 0$

Symetrický absolutní limit

Pro AL1, absolutní inverzní symetrický limit s hysterezí $H_1, L_1, I = 4$

Pro AL1, absolutní přímý symetrický limit s hysterezí $H_1, L_1, I = 5$

Relativní limit vztažen k SP (předchozímu absolutnímu limitu)

Pro AL1, relativní inverzní limit s negativní hysterezí $H_1, L_1, I = 3$

Pro AL1, relativní přímý limit s negativní hysterezí $H_1, L_1, I = 2$

* Minimální hysterez: 2 dílky stupnice

Symetrický relativní limit vztažený k SP (předchozí absolutní limit)

Pro AL1, relativní inverzní limit se symetrickou hysterezí $H_1, L_1, I = 6$

Pro AL1, relativní přímý symetrický limit s hysterezí $H_1, L_1, I = 7$

Poznámka:
Pro limity kteří jsou spojené (relative) k další referenční proměnné (relative), která má rozdílné nastavení pro desetinou tečku, odezva je vždy založena na jednotce stupnice bez brání desetinné tečky v úvahu. Například: Pokud $R_1, n = 0$ (vztázená k IN1) a $R_2, n = 6$ (relativní vztázená k IN3) a IN1 má $dP = 1$, IN3 má $dP = 2$, $AL1 = 200.0$ IN3 = 10.00, $d5,5P = 1$, odezva na limit je 300.0
9.1 Nastavení limitu alarmu

Před nastavováním limitů je musíte nejprve povolit. To je provedeno v menu \(HRd\).

- Přepněte se z hlavního menu do menu \(PAS\). Pro provedení tohoto držte tlačítko [F] dokud se nezobrazí \(PAS\).
- Použijte tlačítko \(\uparrow\) nebo \(\downarrow\) pro nastavení hodnoty "99".
- Poté držte tlačítko [F] dokud se nezobrazí \(HRd\).
- Stiskněte několikrát tlačítko [F] dokud se nezobrazí \(AL.n\).
- Použijte tlačítko \(\uparrow\) nebo \(\downarrow\) pro nastavení čísla limitů pro jejich povolení. Můžete povolit až čtyři limity alarmu.
- Pro potvrzení hodnoty stiskněte tlačítko [F].

Tento nastavení povolí specifický počet limitů alarmu (až do čtyř povolených). Všechny další nastavení jsou provedena v menu \(ALL\).

- Nyní jdete do menu \(ALL\). Pro provedení tohoto držte tlačítko [F] dokud se nezobrazí \(ALL\).
- Stiskněte tlačítko [F]. Nyní jste na parametru \(AR.n\) (kde "n" zastupuje číslo limitu: AL1, AL2, atd.).
- Použijte kód pro nastavení referenční proměnné pro určitý limit.

Následující typy jsou podporovány:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Přímý (overshoot) nebo inverzní (undershoot)</th>
<th>Absolutní nebo relativní k nastavené současné hodnoty</th>
<th>Normální nebo symetrický limit (okno)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Přímý</td>
<td>Absolutní</td>
<td>Normální</td>
</tr>
<tr>
<td>1</td>
<td>Inverzní</td>
<td>Absolutní</td>
<td>Normální</td>
</tr>
<tr>
<td>2</td>
<td>Přímý</td>
<td>Relativní</td>
<td>Normální</td>
</tr>
<tr>
<td>3</td>
<td>Inverzní</td>
<td>Relativní</td>
<td>Normální</td>
</tr>
<tr>
<td>4</td>
<td>Inverzní</td>
<td>Absolutní</td>
<td>Symetrický</td>
</tr>
<tr>
<td>5</td>
<td>Přímý</td>
<td>Absolutní</td>
<td>Symetrický</td>
</tr>
<tr>
<td>6</td>
<td>Inverzní</td>
<td>Relativní</td>
<td>Symetrický</td>
</tr>
<tr>
<td>7</td>
<td>Přímý</td>
<td>Relativní</td>
<td>Symetrický</td>
</tr>
</tbody>
</table>
Poznámka:
Limit 1 může být pouze absolutní, protože relativní limit musí být spojen s předchozím absolutním limitem.

Přídavné funkce
- Přidejte hodnotu pro přídavnou funkci k číslu kódu pro typ limitu alarmu.
- +8, vyprnutý po dobu spouštění přístroje do doby prvního dosáhnutí limitu.
- +16, povolí záštek limitu.
- +32, změní barvu PV displeje pokud je limit aktivní.
- +64, povolí zásobník limitu.
- +128, relativní limit je vztažen k vstupu IN3 (vylučuje kód RAn = 2).
- +128, relativní limit je vztažen k vstupu IN4 (vylučuje kód RAn = 3).
- +256, změní barvu PV displeje pokud hodnota překročí limit (pouze pro limity se zpožděním).
- +512, povolí příbuzný znak řetězců pokud je limit aktivní.
- +1024, povolí příbuzný znak řetězců pokud je limit překročen (pouze pro limity se zpožděním).
- Stisknutím tlačítka [F] potvrďte typ limitu a jakoukoliv přídavnou funkci.

 Každému povolenému limitu můžete přidat alfanumerické znaky, které jsou zobrazeny na PV displeji (displej úroveň 1).

 Tento parametr je použitý pro hysterezu limit alarmů (±9 999 dílků stupnice).
- Určete hodnotu hysterezu a potvrďte ji stisknutím tlačítka [F].

 Každý z pěti znaků je označen určitým velkým písmenem abecedy.

Pokud je pro parametr RAn, aktivní přídavná funkce, která používá znaky řetězce, můžete nyní vložit tento řetězec. Jinak můžete překončit následující kroky a pokračovat přímo k dalšímu limitu alarmu nebo nastavování nížšího krajního hodnoty.

Poznámka:
Před tím, než můžete přidat řetězec znaků k limitu alarmu, musíte povolit nastavení znaků přidáním hodnoty "512" nebo "1024" ke kódu parametru RAn. Pokud byla přidána jiná hodnota, nastavení pole znaků není zobrazeno.

Každému povolenému limitu můžete přidat pět alfanumerických znaků, které jsou zobrazeny na PV displeji (displej úroveň 1).

Každý z pěti znaků je označen určitým velkým písmenem abecedy.

Příklad:

Pro vytvoření číslice 3 musíte nastavit relevantní parametr na hodnotu 1+2+4+8+64 = 79.

Figure 18: Označení použité pro rozlišení pěti znaků na displeji

Toto rozlišení je také použito pro parametry 5Dr,n, 5dr,n, 5Dc,n, 5dc,n a 5De,n v menu RLL.

Těmto parametřům musíte přidat příbuzné hodnoty odpovídajícím znakům, který chcete zobrazit pro limit.

Jednotlivé hodnoty tvoří individuálně zobrazený znak. Hodnota parametru je dána součtem hodnot jednotlivých elementů.

Figure 19: Jak je číslo znaku generováno.
Následující tabulka obsahuje pouze nejběžněji používané znaky a jím přiřazené hodnoty.

Nyní jste na parametru **SdA**.

Vyberte první znak (znak A) pro přiřazení znaku řetězce.

Table 4: Hodnoty pro nejběžněji používané znaky

<table>
<thead>
<tr>
<th>Znak</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>63</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>109</td>
</tr>
<tr>
<td>6</td>
<td>125</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>127</td>
</tr>
<tr>
<td>9</td>
<td>111</td>
</tr>
<tr>
<td>-</td>
<td>128</td>
</tr>
<tr>
<td>a</td>
<td>95</td>
</tr>
<tr>
<td>A</td>
<td>119</td>
</tr>
<tr>
<td>b</td>
<td>124</td>
</tr>
<tr>
<td>c</td>
<td>88</td>
</tr>
<tr>
<td>E</td>
<td>123</td>
</tr>
<tr>
<td>e</td>
<td>115</td>
</tr>
<tr>
<td>F</td>
<td>113</td>
</tr>
<tr>
<td>h</td>
<td>116</td>
</tr>
<tr>
<td>i</td>
<td>4</td>
</tr>
<tr>
<td>l</td>
<td>6</td>
</tr>
<tr>
<td>L</td>
<td>56</td>
</tr>
<tr>
<td>n</td>
<td>55</td>
</tr>
<tr>
<td>n</td>
<td>84</td>
</tr>
<tr>
<td>o</td>
<td>92</td>
</tr>
<tr>
<td>O</td>
<td>63</td>
</tr>
<tr>
<td>p</td>
<td>115</td>
</tr>
<tr>
<td>r</td>
<td>80</td>
</tr>
<tr>
<td>S</td>
<td>109</td>
</tr>
<tr>
<td>S</td>
<td>61</td>
</tr>
<tr>
<td>t</td>
<td>120</td>
</tr>
<tr>
<td>U</td>
<td>62</td>
</tr>
</tbody>
</table>

Pro potvrzení znaku stiskněte tlačítko [F].

Stejným způsobem jako pro A určete znaky B až E. Pro toto jsou určeny parametry **Sdb, SdC, Sdd a SdE**.

Jakmile jste potvrdili znak E, dokončili jste přiřazení znaků.

Pokud jste povolili limit alarmu, který ještě nebyl nakonfigurován, jste vráceni k parametru **Ar.n**, kde můžete provést konfiguraci těchto limitů.

Když máte nastaveny všechny povolené limity, jste poslány k parametru **LoAL**, který obsahuje nastavení specifické hodnoty pro dolní krajiní hodnotu.

Nyní jste na parametru **SdA**.

Vyberte první znak (znak A) pro přiřazení znaku řetězce.

Nyní jste nastavili dolní krajiní hodnotu.

Tato hodnota musí ležet mezi –19 999 a 99 999.

Pro potvrzení hodnoty stiskněte tlačítko [F]. Displej nyní zobrazuje parametr **H andAL**.

H andAL

Zde určete horní krajiní hodnotu.

Tato hodnota musí ležet mezi –19 999 a 99 999.

Pro potvrzení hodnoty stiskněte tlačítko [F].

Nyní jste dospěli k poslednímu bodu nastavování limitů: parametru **rEL**.

Tento parametr určuje chování výstupu pokud je snímač porušen (chybové hlášení **Err**, **Sbr** a **Ebr**).

**Použijte tyto kódy pro nastavení chování pokud dojde u snímače k poruše.

<table>
<thead>
<tr>
<th>Kódy</th>
<th>Limit 1</th>
<th>Limit 2</th>
<th>Limit 3</th>
<th>Právědlné funkce:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>+16, pro nastavení limitu 4 do "ON"</td>
</tr>
<tr>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

Pro potvrzení vstupu stiskněte tlačítko [F].

Nastavení limitů alarmů je nyní kompletní a jste zpět v hlavním menu přístroje.
9.2 Regulace na limitech alarmů

- V měřicím módu několikrát stiskněte tlačítko dokud se v sub-displeji nezobrazí číslo limitů alarmů, které si přeje regulovat.

- Stiskněte tlačítko ▲ nebo ▼.

Tímto změňte nastavení pro určitý limit.

Pokud vám nelze nastavit limit popsaným postupem změňte položku ochrany před náhodnou změnou (Hlavní menu -> Pro) na ochranu 0.
9.3 Výběr typu kontaktu (NC - rozpínací / NO - spínací)

Varování!
Pokud je připojeno napájecí napětí dostanete elektrický šok!
Před otevřením krytu odpojte napájecí kabel.

Upozornění!
Nebezpečí poškození pomocí elektrostatického napětí!
Při zacházení s deskou dodržujte vhodné opatření.

Propojkami J1, J2, J3 a J4 nastavte typ kontaktu (rozpínací “nc” / spínací “no”) pro reléové výstupy, které jsou umístěny ze strany součástek na desce napájecího napětí.

Poznámka:
Relé jsou z továrny nastaveny jako „NO“ (spínací) kontakty.
10. Nastavení Hardware

10.1 Přístup ke chráněné oblasti

Chráněná oblast obsahuje:

- Matematické funkce
- Povolování limitů
- Přířazení tlačítek
- Nastavení digitálních vstupů
- Nastavení displeje
- Linearanizaci vstupů
- Výběr snímačů a jejich kalibrací

Pro získání přístupu ke chráněné oblasti:

- Jděte do menu PR_5.

 To je provedeno držením tlačítka [F] v hlavním menu dokud není zobrazeno PR_5.

PR_5

Toto menu obsahuje pouze jeden parametr.

- Použijte tlačítka \uparrow nebo \downarrow pro nastavení hodnoty "99".

 Jakmile nastavíte hodnotu je chráněná oblast odemčena. Chráněná oblast zůstává odemčena po dobu, kdy jste v jejím nastavení.

Pro přístup k menu ve chráněné oblasti držte jako obvykle tlačítko [F].

10.2 Permanentní zámek

Varování!

Pokud je připojeno napájecí napětí dostanete elektrický šok!

Před otevřením krytu odpojte napájecí kabel.

Upozornění!

Nebezpečí poškození pomocí elektrostatického napětí!

Při zacházení s deskou dodržujte vhodné opatření.

Strana součástek desky CPU obsahuje propojku S9, která je použitá pro kontrolu přístupu do menu přístroje.

Povolit přístup:

- Zkratujte propojku S9.

Zakázat přístup:

- Odpojte propojku S9.

Jak procházíte menu (držením tlačítka [F]), menu 0VT je následováno zobrazením PR_5.

Přístup do složek menu je možné pouze po nastavení hodnoty parametru PR_5 na "99".

Pro povolení/zakázání zobrazení nebo/a pro úpravu specifických parametrů můžete použít parametr Pr_c.

Obsahuje tyto parametry:

- $\text{ln} \ l a \ a$ Y
- $\text{F} \ \text{m} \ a$
- $\text{F} \ \text{m} \ b$
- $\text{AL} \ l a \ a$ Y

Jako další můžete zamezit přístupu do těchto nastavovacích menu:

- Hlavní vstupy ($\text{lnP}. \ l \ \text{lnP}.2$)
- Pomocné vstupy ($\text{lnP}.3\text{, }\text{lnP}.4$)
- Limity alarmů ($\text{AL} \ L$)
Jako další můžete spustit softwarové vypnutí (stand-by mód) a vypnout funkci nulování.

- Nejprve přejděte do menu **PAS**.
 - Pro to zmáčkněte tlačítko [F] do doby než se zobrazí **PAS**.

- Použijte tlačítko ▲ nebo ▼ pro nastavení hodnoty "99".
- Držte tlačítko [F] dokud se nezobrazí **Pro**.

- Nastavte parametr **Pro** na jednu z těchto hodnot:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Zobrazte tyto parametry</th>
<th>Možnost úpravy:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 (1,1, n2,), 1 (n1, n4)</td>
<td>AL: 1, AL: 2, AL: 3, AL: 4</td>
</tr>
<tr>
<td></td>
<td>F: nR, F: nB</td>
<td>AL: 1, AL: 2, AL: 3, AL: 4</td>
</tr>
<tr>
<td>1</td>
<td>1 (1,1, n2,), 1 (n1, n4)</td>
<td>AL: 1, AL: 2, AL: 3, AL: 4</td>
</tr>
<tr>
<td></td>
<td>F: nR, F: nB</td>
<td>AL: 1, AL: 2, AL: 3, AL: 4</td>
</tr>
<tr>
<td>3</td>
<td>1 (1,1, n2,), 1 (n1, n4)</td>
<td>AL: 1, AL: 2, AL: 3, AL: 4</td>
</tr>
</tbody>
</table>

Přídavné funkce
- +4 pro zákaz přístupu k menu \(i \), nP.1, nP.2, nP.3, nP.4, AL a OC
- +8 pro zákaz přístupu do menu SEr nastavení rozhraní
- +16 pro zahájení softwarového vypnutí (stand-by režim)
- +32 pro vypnutí funkce nulování paměti
10.3 Nastavení přístroje

10.3.1 Matematické funkce

- Nejdříve jděte do menu PR5.

 To provedeme držením tlačítka [F] dokud se nezobrazí PR5.

- Použijeme tlačítka ▲ nebo ▼ pro nastavení hodnoty "99".

- Držte tlačítko [F] dokud se nezobrazí Hrd.

- Několikrát stiskněte tlačítko [F] dokud se nezobrazí Func.A.

Tento parametr se používá pro výběr použité matematické funkce, kterou můžete použít na vstupní hodnoty digitálního měřidla.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Funkce vypnuta</td>
</tr>
<tr>
<td>2</td>
<td>In1 + In2</td>
</tr>
<tr>
<td>3</td>
<td>In1 – In2</td>
</tr>
<tr>
<td>4</td>
<td>In1 / In2 (In2 může nabývat pouze kladných hodnot v rozmezí 1 až 99 999)</td>
</tr>
<tr>
<td>5</td>
<td>In1/1 (In1 může nabývat pouze kladných hodnot v rozmezí 0 až 99 999)</td>
</tr>
<tr>
<td>6</td>
<td>(In1 + In2)/2</td>
</tr>
<tr>
<td>7</td>
<td>In3 x C1.A</td>
</tr>
<tr>
<td>8</td>
<td>(In1 + In2 + In3 + In4) / 4</td>
</tr>
</tbody>
</table>

Pokud vyberete funkce 0, 2, 3, 4, 5, 6 nebo 8 přeskočte několik následujících kroků a jste přímo poslali na výběr druhé matematické funkce Func.b.

Vyberte další koeficient C_2R. Jsou možné následující hodnoty:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Vyberte koeficient C_4R. Jsou možné následující hodnoty:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Jakmile jste určili koeficient C_5R, dokončili jste nastavení parametrů pro matematickou funkci A.
Nyní jste na parametru **Func.b.**

Tento parametr se používá pro výběr použití matematické funkce, kterou můžete použít na vstupní hodnoty digitálního měřidla.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Funkce vypnuta</td>
</tr>
<tr>
<td>1</td>
<td>Fin.b = ((C1.b \cdot \text{In1}.b) + C2.b \cdot \text{OPEr}b \cdot (C3.b \cdot \text{In2}.b) + C4.b \cdot \text{C5}.b)</td>
</tr>
<tr>
<td>2</td>
<td>\text{In1} + \text{In2}</td>
</tr>
<tr>
<td>3</td>
<td>\text{In1} \cdot \text{In2}</td>
</tr>
<tr>
<td>4</td>
<td>\text{In1} / \text{In2} (\text{In2} musí nabývat pouze kladné hodnoty od 1 do 99 999)</td>
</tr>
<tr>
<td>5</td>
<td>\text{In1} \cdot \text{In2} (\text{In1} musí nabývat pouze kladné hodnoty od 0 do 99 999)</td>
</tr>
<tr>
<td>6</td>
<td>\text{In1} + \text{In2} / 2</td>
</tr>
<tr>
<td>7</td>
<td>\text{In3} \cdot \text{C1.b}</td>
</tr>
<tr>
<td>8</td>
<td>\text{In1} + \text{In2} + \text{In3} + \text{In4} / 4</td>
</tr>
</tbody>
</table>

Pokud vyberete funkce 0, 2, 3, 4, 5, 6 nebo 8 přeskočte několik následujících kroků a jste přímo poslán na povolování limitů alarmů (viz. sekce 10.3.2 "Povolování alarmů limitů").

Pokud vyberete funkci 1, potřebujete určit další parametry před tím, než se dostanete k povolování limitů alarmů.

Pokud jste vybrali funkci 1:

- **Určete hodnoty dvou proměnných** \(\text{In1} \) a \(\text{In2} \).

<table>
<thead>
<tr>
<th>Kód</th>
<th>Proměnná</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>= 0</td>
</tr>
<tr>
<td>1</td>
<td>\text{In1}</td>
</tr>
<tr>
<td>2</td>
<td>\text{In2}</td>
</tr>
</tbody>
</table>

- **Pro potvrzení volby stiskněte** [F].

- **Určete koeficient** **C1.b**.

- **Určete další koeficient** **C2.b**.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- **Nyní vyberte koeficient** **C3.b**.

- **Na displeji se nyní zobrazí parametr** **OPEr.b**.

- **Potřebujete vybrat matematický operátor B.**

<table>
<thead>
<tr>
<th>Kód</th>
<th>Operátor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
</tr>
</tbody>
</table>

Volbu potvrďte tlačítkem [F].

- **Určete koeficient** **C1.b**.

- **Určete další koeficient** **C2.b**.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- **Nyní vyberte koeficient** **C3.b**.

Určete koeficient C_4.

Jsou možné následující hodnoty:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Nakonec vyberte koeficient C_5.

Jakmile jste určili koeficient C_5, dokončili jste nastavování parametrů pro matematickou funkci B. Nyní jste na parametru AL_n. Tento parametr je použit pro povolení limitů alarmů.

Na stránce 100 je uveden příklad matematické funkce.

10.3.2 Povolování alarmů limitů

Nejprve přejděte do menu PAS.

To je provedeno držením tlačítka [F] dokud se nezobrazí PAS.

Použijte tlačítko \uparrow nebo \downarrow pro nastavení hodnoty "99".

Družte tlačítko [F] dokud se nezobrazí Hrd.

Několikrát stiskněte tlačítko [F] dokud se nezobrazí AL_n.

Tento parametr je použit pro povolování alarmů limitů.

Nastavte počet limitů alarmů, které mají být povoleny.

Můžete nastavit až čtyři alarmy limitů.

Po povolení limitů, můžete určit funkce tlačítek na kontrolním panelu. Pro tyto účely jsou použity parametry $bu\cdot l$ až 3.

10.3.3 Přiřazení tlačítek

Nejprve přejděte na menu PAS.

Toho je docíleno držením tlačítka [F] dokud není zobrazeno PAS.

Použijte tlačítko \uparrow nebo \downarrow pro nastavení hodnoty "99".

Družte tlačítko [F] dokud se nezobrazí Hrd.

Následující možnosti přiřazení jsou možné pro všechny tři tlačítka:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Uzamčené (bez funkce)</td>
<td>16</td>
<td>Kalibrace tenzometru IN1</td>
</tr>
<tr>
<td>2</td>
<td>HOLD IN1</td>
<td>23</td>
<td>Nulovat displej (tare) IN1</td>
</tr>
<tr>
<td>3</td>
<td>Vynulovat zásobník limitu</td>
<td>24</td>
<td>Nulovat displej (tare) IN1 / Vynulovat zásobník limitů</td>
</tr>
<tr>
<td>7</td>
<td>Nastavit(Set) / nulovat(Reset) = OUT1 až 4 (pouze pro buč. I)</td>
<td>25</td>
<td>Nulovat displej (tare) IN1 / Vynulovat zásobník špičkové hodnoty IN1</td>
</tr>
<tr>
<td>8</td>
<td>Povolit špičkovou hodnotu = (maximum IN1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Povolit špičkovou hodnotu - (minimum IN1)</td>
<td>26</td>
<td>Nulovat displej (tare) IN1 / Vynulovat zásobník špičkové hodnoty IN1</td>
</tr>
<tr>
<td>10</td>
<td>Povolit hodnotu rozkmitu (max. peak value – min. peak value) IN1</td>
<td>27</td>
<td>Display HOLD</td>
</tr>
<tr>
<td>11</td>
<td>Vynulovat špičkovou hodnotu pro IN1</td>
<td>28</td>
<td>FLASH IN1</td>
</tr>
<tr>
<td>12</td>
<td>Vynulovat zásobník limitů / zásobník špičkové hodnoty IN1</td>
<td>29</td>
<td>Net /Gross (Pokud je zobrazena hodnota Gross, jednotky blikají na displeji)</td>
</tr>
<tr>
<td>15</td>
<td>Kalibrační kontrola tenzometru IN1 (Použitím shunt rezistoru)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Přidavné funkce

- +32 pokud odkazujete na IN2 (pouze pro volby, které odkazují na IN1).
- +64, Možné pouze pro tlačítko buč. I, vypínaná funkci "tlačítek [F] + [●]" ("nabídka zpět").
10.3.4 Digitální vstupy

- Nejprve jede do menu PR5.

 [PR5]

- Pro toto držte tlačítko [F] dokud se nezobrazí PR5.

- Použijte tlačítko ▲ nebo ▼ pro nastavení hodnoty "99".

- Držte tlačítko [F] dokud se nezobrazí HRd.

- Stiskněte tlačítko [F].

- Nyní jste na parametru Hd, I.

 [Hd, I]

Toto nastavení je použito pro určení typu průběhu a síťové frekvenci napájecího napětí.

Nastavení "Rychlý" je použito například pro řízení tlaku a průtoku, a nastavení "Pomalý" je použito například pro regulaci teploty.

Máte na výběr následující možnosti:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Typ průběhu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Rychlý (frekvence sítě 50 Hz)</td>
</tr>
<tr>
<td>2</td>
<td>Pomalý (frekvence sítě 50 Hz)</td>
</tr>
<tr>
<td>4</td>
<td>Rychlý (frekvence sítě 60 Hz)</td>
</tr>
<tr>
<td>6</td>
<td>Pomalý (frekvence sítě 60 Hz)</td>
</tr>
</tbody>
</table>

Přídavné funkce:

- +8 nastaví digitální vstupy DI1 a DI2 do nastavení "NPN".
- Stiskněte tlačítko [F].
- Nyní jste na parametru d ≥ I.

 [d ≥ I]

Tento parametř je použitý s dalším parametrem d ≥ 2 pro definici funkce dvou digitálních vstupů.

Přídavné funkce

- +32 pro odkazování na IN2 (pouze pro tabulkové hodnoty odkazující na IN1).
- +64 pro vstupy s obrácenou logikou.
- +128 pro vynucení log. "1" (on).

 Potvrdte tlačítkem [F].

Nyní je na displeji zobrazen parametr d5SP, který je použit pro nastavení displeje.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Odpovězo (bez funkce)</td>
<td>16</td>
<td>Kalibrace tenzometru IN1</td>
</tr>
<tr>
<td>2</td>
<td>HOLD IN1</td>
<td>17</td>
<td>Softwarové vypnutí přístroje</td>
</tr>
<tr>
<td>3</td>
<td>Vynulovat zásobník limitů</td>
<td>18</td>
<td>Zakázání tlačítka [F]</td>
</tr>
<tr>
<td>4</td>
<td>Prahou hodnota limitu 1 na vstupu IN3</td>
<td>19</td>
<td>Vzdálené ovládání tlačítka [F]</td>
</tr>
<tr>
<td>5</td>
<td>Prahou hodnota limitu 1 na vstupu IN4</td>
<td>20</td>
<td>Vzdálené ovládání tlačítka ▲</td>
</tr>
<tr>
<td>6</td>
<td>Prahou hodnota limitu 1 na vstupu IN3 a prahou hodnota limitu e na vstupu IN4</td>
<td>21</td>
<td>Vzdálené ovládání tlačítka ▼</td>
</tr>
<tr>
<td>7</td>
<td>Nastavit(Set) / nulovat(Reset) = OUT1 až 4</td>
<td>22</td>
<td>Nulování displeje (tare) IN1</td>
</tr>
<tr>
<td>8</td>
<td>Povolit špičkovou hodnotu + (maximum IN1)</td>
<td>23</td>
<td>Nulování displeje (tare) IN1 / Vynulovat zásobník limitů</td>
</tr>
<tr>
<td>9</td>
<td>Povolit špičkovou hodnotu - (minimum IN1)</td>
<td>24</td>
<td>Nulování displeje (tare) IN1 / Vynulovat zásobník limitů</td>
</tr>
<tr>
<td>10</td>
<td>Povolit hodnotu rozkmitu (peak-to-peak) (max. peak value – min. peak value) IN1</td>
<td>25</td>
<td>Nulování displeje (tare) IN1 / Vynulovat zásobník špičkové hodnoty na IN1</td>
</tr>
<tr>
<td>11</td>
<td>Vynulovat zásobník špičkové hodnoty na IN1</td>
<td>26</td>
<td>Nulování displeje (tare) IN1 / Vynulovat zásobník špičkové hodnoty na IN1</td>
</tr>
<tr>
<td>12</td>
<td>Vynulovat zásobník limitů / špičkové hodnoty IN1</td>
<td>27</td>
<td>Display HOLD IN1</td>
</tr>
<tr>
<td>15</td>
<td>Kontrola kalibrace tenzometru IN1 (s využitím shunt rezistoru)</td>
<td>28</td>
<td>FLASH IN1</td>
</tr>
<tr>
<td>16</td>
<td>Net / Gross (když je aktivní = gross)</td>
<td>29</td>
<td>Změna barvy PV displeje.</td>
</tr>
</tbody>
</table>
10.3.5 Nastavení displeje

- Nejprve jděte do menu \textsc{pas}.
 Pro toto držte tlačítko [F] dokud se nezobrazí \textsc{pas}.
 \begin{center}
 \textsc{pas}
 \end{center}

- Použijte tlačítko ▲ nebo ▼ pro nastavení hodnoty "99".

- Držte tlačítko [F] dokud se nezobrazí \textsc{hrd}.
 \begin{center}
 \textsc{hrd}
 \end{center}

- Několikrát stiskněte tlačítko [F] dokud se nezobrazí \textsc{d5.sp}.
 \begin{center}
 \textsc{d5.sp}
 \end{center}

- Vyberte proměnnou, která bude zobrazena v normálním módě.
 Máte následující možnosti:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN1</td>
</tr>
<tr>
<td>2</td>
<td>IN2</td>
</tr>
<tr>
<td>3</td>
<td>IN3</td>
</tr>
<tr>
<td>4</td>
<td>IN4</td>
</tr>
<tr>
<td>8</td>
<td>Analogový výstup</td>
</tr>
</tbody>
</table>

Přidavné funkce:
- +16 pro zelené hodnoty na displeji.

- Pro potvrzení výběru stiskněte [F].

- Následně vyberte fyzickou jednotku pro zobrazení na F displeji.
 \textsc{d5.f} určí fyzickou jednotku proměnné pro F displej na PV displeji.

\textsc{d5.sp} určí jednotku pro IN1 zobrazenou na F display.
\textsc{d5.sp} určí jednotku pro IN3 zobrazenou F display.

\textsc{sd5.sp} určí jednotku pro IN2 zobrazenou na F display.
\textsc{sd5.sp} určí jednotku pro IN2 zobrazenou na F display.
\textsc{sd5.sp} určí jednotku pro IN1 zobrazenou F display.
\textsc{sd5.sp} určí jednotku pro IN3 zobrazenou F display.

Sd5.PU určí jednotku pro zobrazenou F display.

Na výběr máte následující možnosti:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bez funkce</td>
</tr>
<tr>
<td>1</td>
<td>HOLD IN1</td>
</tr>
<tr>
<td>2</td>
<td>HOLD IN2</td>
</tr>
<tr>
<td>3</td>
<td>Zdvojovat DI1</td>
</tr>
<tr>
<td>4</td>
<td>Zdvojovat DI2</td>
</tr>
<tr>
<td>5</td>
<td>Porucha (vadný snímač)</td>
</tr>
<tr>
<td>6</td>
<td>AL1</td>
</tr>
<tr>
<td>7</td>
<td>AL2</td>
</tr>
<tr>
<td>8</td>
<td>AL3</td>
</tr>
<tr>
<td>9</td>
<td>AL1 nebo AL2</td>
</tr>
<tr>
<td>10</td>
<td>AL1 nebo AL2 nebo AL3</td>
</tr>
</tbody>
</table>

Přidavné funkce:
- +16 pro zelené hodnoty na displeji.

- Použijte tento parametr a obdobné parametry \textsc{led.3} a \textsc{led.4} pro nastavení funkce LED L1-L4.

Na výběr máte následující možnosti:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bez funkce</td>
</tr>
<tr>
<td>1</td>
<td>AL1 a AL2</td>
</tr>
<tr>
<td>2</td>
<td>AL1 a AL2 a AL3</td>
</tr>
<tr>
<td>3</td>
<td>Automatická kalibrace IN1</td>
</tr>
<tr>
<td>4</td>
<td>Automatická kalibrace IN2</td>
</tr>
<tr>
<td>5</td>
<td>Zobrazená max. hodnota + (minimum IN1)</td>
</tr>
<tr>
<td>6</td>
<td>Zobrazená max. hodnota - (minimum IN1)</td>
</tr>
<tr>
<td>7</td>
<td>Zobrazená max. hodnota + (maximum IN1)</td>
</tr>
<tr>
<td>8</td>
<td>Zobrazená max. hodnota - (maximum IN1)</td>
</tr>
<tr>
<td>9</td>
<td>Zobrazen rozkmit na IN1</td>
</tr>
<tr>
<td>10</td>
<td>Zobrazen rozkmit na IN2</td>
</tr>
</tbody>
</table>

Přidavné funkce:
- +32 povolit blinkání LED pokud je displej aktivní.
- +64 invertovat stav LED.

Jakmile dokončíte specifikace funkce LED, dokončíte hardwarovou konfiguraci. Když potvrďte funkci jste vráceni do hlavního menu.
10.4 Linearizace vstupu

Pro linearizace je použito menu L \(\infty \).

- Nejprve přejděte k menu PAS.

 Pro toto držte tlačítko [F] dokud se nezobrazí PAS.

- Použijte tlačítko ▲ nebo ▼ pro nastavení hodnoty "99".

- Držte tlačítko [F] dokud se nezobrazí L \(\infty \).

- Stiskněte tlačítko [F].

Nyní jste na parametru \(\text{Typ} \), který je použit pro určení typu linearizace.

Můžete vybrat jednu z následujících typů linearizace:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Typ linearizace</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Proměnné intervaly (maximum 32 intervalů)</td>
</tr>
<tr>
<td>1</td>
<td>Proměnné intervaly s učením na IN1 (maximum 32 intervalů (=kroky))</td>
</tr>
<tr>
<td>2</td>
<td>Proměnné intervaly s učením na IN2 (maximum 32 intervalů (=kroky))</td>
</tr>
<tr>
<td>3</td>
<td>Proměnné intervaly s učením na IN3 (maximum 32 intervalů (=kroky))</td>
</tr>
<tr>
<td>4</td>
<td>Proměnné intervaly s učením na IN4 (maximum 32 intervalů (=kroky))</td>
</tr>
<tr>
<td>5</td>
<td>Linearizace s fixními intervaly (64 intervalů (= kroky))</td>
</tr>
</tbody>
</table>

- Pro potvrzení typu linearizace stiskněte tlačítko [F].

Postup linearizace pro vstup je shodný pro všechny druhy linearizace do tohoto bodu linearizace.

Od bodu "Step.n" dále se postup pro typy linearizace 0 až 4 liší do linearizace typu 5.
Digital měřidlo
Model 9163

Vybral jste typ linearizace od 0 do 4:
Jakmile jste vybrali typ linearizace nebo rozsah teplotního snímače dostali jste se na parametr \texttt{SteEP.n}.

\begin{itemize}
 \item Nastavte počet intervalů (kroků), které potřebujete.
 Musíte nastavit hodnotu minimálně 1 a maximálně 32.
 Jakmile potvrdíte číslo stisknutím tlačítka \texttt{[F]} přistoupíte k parametrům \texttt{SS}.
 \item Nastavte dolní mez stupnice.
 Nastavte stejnou hodnotu, kterou jste vložili do parametru \texttt{LoS}. Tato hodnota musí být od –19 999 do 99 999.
 Po potvrzení (tlačítko \texttt{[F]}), displej ukazuje parametr \texttt{S.0 A}.
\end{itemize}

\begin{itemize}
 \item Linearizace vstoupila do režimu učení “teach-in”, vstup je měřen. To musíte potvrdit stiskem tlačítka \texttt{[F]}.
 \item Nyní přidělte přiřazenou/ měřenou hodnotu vstupu s násobkem 1/10 000 pro hodnotu, kterou určíte v parametru \texttt{S.0 lb}.
 Hodnota parametru \texttt{S.0 lb} musí být v mezích od 0 do 10 000.
\end{itemize}

Opakujte tyto kroky pro počet nastavených parametrů, který jste určili v parametru \texttt{SteEP.n}.

Digital měřidlo
Model 9163

Vybral jste typ linearizace 5:
Vybral jste typ linearizace nebo rozsah pro snímač teploty, jste na parametr \texttt{S.00}.

\begin{itemize}
 \item Nastavte dolní mez stupnice.
 Vložte stejnou hodnotu, kterou jste vložili do parametru \texttt{LoS}. Tato hodnota musí být mezi –19 999 a 99 999.
 \item Tuto hodnotu potvrdte stisknutím tlačítka \texttt{[F]}.
 \item Vložte počet intervalů od 1 do 64.
 S využitím této rovnice vypočítejte tyto hodnoty:

 \[\text{Value} = \frac{(\text{mV lower scale limit} + n \cdot (\text{mV upper scale limit} - \text{mV lower scale limit}))}{64} \]

 "n" = číslo zastupující počet intervalů (1-64).
 Výsledek rovnice musí být mezi –19 999 a 99 999 pro všechny "n".
\end{itemize}

Poznámka:
Hodnota parametru \texttt{S.64} musí být shodná s hodnotou nastavenou v parametru \texttt{HiS}.
10.5 Kalibrace specifických snímačů

Kalibráční procedura záleží na snímači, který jste vybrali pro vybraný vstup.

Základní informace

Přístroj 9163 může být kalibrůván pomocí výběrem metod.

- Kalibrace využívající fyzikální jednotku
- Kalibraci vložením dat z kalibráčního listu snímače

Následující sekce popisují hlavní detaily a možnosti nastavení.

10.5.1 Potenciometr nebo lineární signál

Kalibrace je nutná pro definování vztahu mezi měřeným elektrickým signálem a připojeným snímačem pro zobrazení správné měřené hodnoty. Běžné měří snímače kalibrace certifikát, který můžete použít pro nalezení hodnot elektrických signálů.

Příklad certifikátu je ukázán na obrázku, kde jsou důležité hodnoty zvýrazněny.

**Průřad a Kalibrůprotokol

Test- and Calibration Certificate

Potenciometrická čidlo:

Potenciometrický dispektor sensor

- **Typ:** 8712-100
- **Sériový číslo:** 8705121858

Měřicí přístroj:

- **Typ:** Lineární elektrický signál
- **Měrný rozsah:** [-9999 ... 99999] (+/-)

Mechanický čidlo:

- **Mechanický dispektor:** [-9999 ... 99999] (+/-)

Maximální dopad velkého napětí:

- **Maximální dopad velkého napětí:** [± 60 Vc]

Optický čidlo:

- **Optický technický čidlo:** [± 0,1 % k. d.]/(a ± 2,5 % při k. d.)

Kalibrace:

- **Kalibrace:** po přijetí [± 10 m/s]

Přístroj:

- **Přístroj:** ISO 9001

Příprava na kalibraci:

- **Příprava:** Zákazník

Rozšíření kalibrace:

- **Rozšíření kalibrace:** ISO/IEC 17025

Rozšíření kalibrace:

- **Rozšíření kalibrace:** ISO/IEC 17025 akreditovaných.

Obrázek 24: Testovací a kalibrace čidla dráhy s potenciometrem

Měření s použitím kalibrávaného závěsného je nejvíce přímým způsobem kalibrace pro systémy, které měří pozici nebo délkou (jako jsou potenciometrické snímače dráhy). Potenciometrické snímače natočené mohou být také připojeny.
Proveděte následující kroky k provedení kalibrace:

Poznámka:
Před kalibrací připojte všechny snímače k digitálnímu měřidlu. Pokud jsou všechny snímače, které jsou zapojeny k přístroji během normálního měření nejsou zapojeny, při kalibraci se může vyskytnout chyba.

Poznámka:
Pokud je to nutné, můžete kalibraci přerušit od parametru \(\text{C.L.o} \) dál. Pro přerušení současné držte tlačítko \([\times] + [F] \). Jste přeneseni zpět k parametru \(\text{U.C.R.L} \).

Poznámka:
Potenciometrické snímače dráhy mají obvykle nevyužitou oblasti na začátku a na konci měřicího rozsahu, kde se signál nemění přestože se mání posunutí nebo otočení.

- Připojte snímače k přístroji.
- Přejděte do menu \(\text{P.A.S.} \).

 Pro toto držte tlačítko \([F] \) dokud se nezobrazí \(\text{P.A.S.} \).

 ![PAS.png](pas.png)

- Použijte tlačítko \(\uparrow \) nebo \(\downarrow \) pro nastavení hodnoty "99".
- Držte tlačítko \([F] \) dokud se nezobrazí \(\text{U.C.R.L} \).

 ![UCRL.png](ucrl.png)

- Vyberte požadovaný vstup:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vstup IN1</td>
</tr>
<tr>
<td>2</td>
<td>Vstup IN2</td>
</tr>
<tr>
<td>3</td>
<td>Vstup IN3</td>
</tr>
<tr>
<td>4</td>
<td>Vstup IN4</td>
</tr>
</tbody>
</table>

- Pro potvrzení výběru stiskněte tlačítko \([F] \).

 Nyní jste na parametru \(\text{C.L.o} \).

 ![CL.png](cl.png)

- Nastavte potenciometr na minimální hodnotu.

 Pro potvrzení minimální hodnoty stiskněte tlačítko \([F] \). Nyní displej ukazuje parametr \(\text{C.H.i} \).

 ![CH.png](ch.png)

- Nastavte potenciometr na maximální hodnotu.

 Jezdec potenciometru musí být na pozici s maximálním napětím.

- Pro potvrzení maximální hodnoty stiskněte tlačítko \([F] \). Tímto je skončena kalibrace potenciometru nebo lineárního signálu.

 Nyní jste znova v hlavním menu na horním parametru \(\text{U.C.R.L} \).
10.5.2 Tenzometrické snímatě

Poznámka:

Pokud používáte kalibrátor pro kalibraci, nastavte parametr \textit{Rs5} v menu \textit{Dut} na "0". Jinak digitální indikátor hlásí chybu \textit{Ebr}.

Následující kalibrací procedura je použita pro definování vztahu mezi měřeným elektrickým signálem tenzometrického senzoru (dolní kalibrací hodnota, horní kalibrací hodnota) a měřením, které je zobrazeno (spodní a horní hodnota veličiny). Jde o jednoduchou dvou bodovou kalibrací proceduru.

![Figure 25](image)

Měřené množství a signál snímatě

Hodnoty jsou spojeny následujícím způsobem:

- Dolní hodnota veličiny \rightarrow Dolní kalibrací hodnota
- Horní hodnota veličiny \rightarrow Horní kalibrací hodnota

Dolní kalibrací hodnota je velikost elektrického signálu při zatižení snímatě v dolní části rozsahu (obvykle nulová hodnota snímatě).

Při kalibraci nulového bodu tenzometrického snímatě je možné posunout se z počátku, to je způsobeno uchycením (součástmi, které přenáší externí sílu na snímatě) nebo stárnutím materiálu snímatě. Kalibrací certifikát málokdy uvádí tuto hodnotu. Proto je také možné ji naučit.

Ostatní výrazy:

- Nominální zatižení \rightarrow Horní hodnota stupnice
- Nulový signál \rightarrow Nulový bod, signál bez působení měřené veličiny, dolní kalibrací hodnota
- Nominální výstup \rightarrow Výstupní signál při nominálním zatižení, citlivost v preferovaném směru, horní kalibrací hodnota

![Figure 26](image)

Způsob propojení: 4-vodičové

- Excitation
- Signal
- - Excitation shield

Měřící řetězec obsahuje množství součástí, každá ovlivňuje přesnost měření. Jediným z běžných způsobů, jak se vyhnout problémům s přesností je vyhodit 6-vodičové zapojení nebo kalibraci 4-vodičového zapojení jako celého řetězce.

Ve většině aplikací je 4-vodičové zapojení dostatečné.

Poznámka:

Digitální měřidlo 9163 podporuje pouze 4-vodičovou technologii.
Proveděte následující kroky pro provedení kalibrace:

Poznámka:
Před kalibrací připojte všechny snímače k digitálnímu měřidlu. Pokud jsou všechny snímače, které jsou zapojeny k přístroji během normálního měření nejsou zapojeny, při kalibraci se může vyskytnout chyba.

Poznámka:
Pokud je to nutné, můžete kalibraci přerušit od parametru Č.La. Po přerušení současné držte tlačítko [X] + [F]. Jste přeneseni z parametru UERL.

- Připojte snímače k přístroji.
- Odstraňte zatíž ze snímačů.
- Přejděte do menu PARS.

Pro docílení této nabídky držte tlačítko [F] dokud se nezobrazí PARS.

- Použijte tlačítko ▲ nebo ▼ pro nastavení hodnoty "99".
- Držte tlačítko [F] dokud se neobjeví UERL.

Vyberte požadovaný vstup:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vstup IN1</td>
</tr>
<tr>
<td>2</td>
<td>Vstup IN2</td>
</tr>
<tr>
<td>3</td>
<td>Vstup IN3</td>
</tr>
<tr>
<td>4</td>
<td>Vstup IN4</td>
</tr>
</tbody>
</table>

Pro potvrzení výběru stiskněte tlačítko [F].

Nyní jste na parametru S6.1.

Tento parametr je použit pro uložení výstupu snímače, který je bez zatížení.
10.5.3 RTD (PT100)

Tento pasivní snímač je vyroben z platiny. Nominální hodnota odporu při teplotě 0 °C odpovídá 100 Ω. Změna teploty v rozsahu 0 °C a 100 °C odpovídá změně 0.385 % / °C. Hodnoty teploty a odpovídající hodnoty odporů jsou uvedeny v normě DIN EN 60751.

Senzory jsou rozděleny do tříd A nebo B. Třída A může mít odchylku teploty 0.35 °C p ři 100 °C, a třída B může mít odchylku 0.8 °C.

Teplota je měřena měřením odporu snímače Pt100, která může být převedena na teplotu ve °C.

Proveděte následující kroky pro provedení kalibrace:

Poznámka:

Před kalibrací připojte všechny snímače k digitálnímu měřidlu. Pokud jsou všechny snímače, které jsou zapojeny k přístroji během normálního měření nejsou zapojeny, při kalibraci se může vyskytnout chyba.

Poznámka:

Pokud je to nutné, můžete kalibraci snímače PT100 provést na zařízení MT80/MT86. Pro potvrzení výběru stiskněte tlačítko [F].

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vstup IN1</td>
</tr>
<tr>
<td>2</td>
<td>Vstup IN2</td>
</tr>
</tbody>
</table>

Pro docílení této nabídky držte tlačítko [F] dokud se nezobrazí **PAS**.

Připojte snímače k přístroji

Odstraňte zátěž ze snímačů.

Přejděte do menu **PAS**.

Použijte tlačítko ▲ nebo ▼ pro nastavení hodnoty "99".

Držte tlačítko [F] dokud se neobjeví **ÚČAL**.

Vyberte požadovaný vstup:

Vyberte požadovaný vstup:

ÚČAL

Pro potvrzení výběru stiskněte tlačítko [F].
10.5.4 Termočlánek (TC)

Tyto aktivní snímače jsou vyrobeny ze dvou vodičů vyrobených z jiných materiálů nebo slitin a na jedné straně spojeny.

Pokud je spojený konec zahříván, vzniká na jeho koncích termoelektrické napětí. Amplituda napětí závisí na typu materiálů a na rozdílu teplot mezi měřicím a referenčním bodem snímače.

Materiály používané v dnešní době odpovídají hodnotám in DIN EN 60584 a DIN 43710.

Provedte následující kroky pro provedení kalibrace:

Poznámka:
Před kalibrací připojte všechny snímače k digitálnímu měřítku. Pokud jsou všechny snímače, které jsou zapojeny k přístroji během normálního měření nejsou zapojeny, při kalibraci se může vyskytnout chyba.

Poznámka:
Pokud je to nutné, můžete kalibraci přerušit od parametru \(C.L0 \) dál. Pro přerušení současné držte tlačítko \([F]\) + \([F]\). Jste přeneseni zpět k parametru \(U.ER \).

- Připojte snímače k přístroji
- Odstraňte zátěž ze snímačů.
- Přejděte do menu \(PAS \).
 - Pro docílení této nabídky držte tlačítko \([F]\) dokud se nezobrazí \(PAS \).

 ➢ Použijte tlačítko \(▲ \) nebo \(▼ \) pro nastavení hodnoty "99".
 ➢ Držte tlačítko \([F]\) dokud se neobjeví \(U.ER \).

 ➢ Vyberte požadovaný vstup:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vstup IN1</td>
</tr>
<tr>
<td>2</td>
<td>Vstup IN2</td>
</tr>
</tbody>
</table>

- Pro potvrzení volby stiskněte tlačítko \([F]\).
10.5.5 Nastavení továrního nastavení kalibrace

- Nejprve přejděte do menu \texttt{PAS}.

 To je provedeno držením tlačítka [F] dokud se nezobrazí \texttt{PAS}.

- Použijte tlačítko ▲ nebo ▼ pro nastavení hodnoty "99".

- Držte tlačítko [F] dokud se nezobrazí \texttt{CAL CAL CAL CAL}.

- Přidejte číslo 32 ke vstupům, které si přejete resetovat.

Vytvořte následující kódy pro načtení továrního nastavení kalibrace:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>Vstup IN1</td>
</tr>
<tr>
<td>34</td>
<td>Vstup IN2</td>
</tr>
<tr>
<td>35</td>
<td>Vstup IN3</td>
</tr>
<tr>
<td>36</td>
<td>Vstup IN4</td>
</tr>
<tr>
<td>39</td>
<td>\texttt{CR Thornton} - Jemné nastavení analogového výstupu</td>
</tr>
</tbody>
</table>

- Slisknete tlačítko [F].

Nyní proběhlo resetování kalibrace pro vybraný kanál do továrního nastavení.

Nyní jste v hlavním menu nahoře kalibračního menu \texttt{UCAL}, kde můžete provádět kalibrace.

	extbf{Figure 27: Kalibrace rozdílných typů senzorů}

- \texttt{CRAL} - Minimum value, potentiometer with slider in minimum voltage position or in center position if symmetrical input.
- \texttt{CL0} - Maximum value, potentiometer with slider in maximum voltage position.
- \texttt{SC3} - Zero-value measurement phase with no load on strain gage (weight or pressure equals zero).
- \texttt{CR Thornton} - Jemné nastavení analogového výstupu.

Strana 127/156
11. Zapnutí/vypnutí přístroje přes software (stand-by)

Pro tovární nastavení pro ON/OFF tato funkce musí být povolena.

Tato funkce může být přiřazena k digitálnímu vstupu.

11.1 Vypnutí (stand-by)

- Držte současně tlačítka [F] a ▲ déle než 5 sekund.
 - Nyní se přístroj přepne do režimu OFF.

Během režimu stand-by je síťové napětí udržováno a PV displej je neaktivní s nápiskem "OFF".

Všechny výstupy (limitní výstupy a výstupy relé) jsou vypnuty (log. 0, uvolnění relé).

Všechny funkce přístroje, s výjimkou sběru aktuálních dat a zobrazením a funkce zapnutí jsou vypnuty.

11.2 Zapnutí (power-up)

- Držte tlačítko [F] po dobu delší než je 5 sekund.
 - Nyní se 9163 přepne ze stavu OFF do stavu ON.

Celkové zakázání funkce ON/OFF

Pokud zakázete funkci ON/OFF nemůžete přístroj přepnout do stand-by režimu.

- Přidání 16 k hodnote parametru Pr0 (viz. sekce 10.2: "Permanentní zámečk" na stránce 94)
(Pr0 + 16).

Pokud je přístroj odpojen od síti během stand-by režimu po zapnutí je OFF režim znovu aktivován.
12. Údržba

Varování
Pokud je zapojené napájení dostanete elektrický šok.
Odpojte digitální měřidlo ze zdroje před odstraněním krytu.

Pokud je přístroj správně nainstalován podle instruční a doporučení tohoto operačního manuálu, a nastaven správně, bude řádně pracovat. Mimo běžné čištění předního panelu a vnitřních součásti není potřeba žádná speciální údržba.
Před odstraněním krytu se vždy ujistěte, že od přístroje bylo odpojeno napájecí napájení.

Pro přístup do vnitřních částí (např.: pro čištění nebo kontrolu propojek), jednoduše potřebujete vyšroubovat upevňující šrouby na předním panelu a vytahnout jednotku. Nepotřeba odpojoval kabely.
Přístroj nemá vypínací.

12.1 Čištění

Upozornění!
Přední panel digitálního přístroje bude poškozen.
Nikdy nepoužívejte čisticí prostředky na uhlovodíkovém (hydrocarbon) základu (např.: benzen atd.)

Pro vyčištění předního panelu a krytu použijte navlhčený hadřík nebo alkohol.
Pro odstranění prachu z desek plošných spojů nepoužívejte stlačený vzduch ale použijte štětec s jemnými vláknky.

12.2 Oprava

Oprava musí být provedena technickým pracovníkem schváleným firmou Burster.
Záruka okamžitě končí, pokud neschválená osoba provádí opravy nebo modifikuje hardware.

Strana součástek desky CPU obsahuje propojku S9, která, pokud je vložena povoluje přístup do nastavení přístroje.

12.3 Poradce při potížích

Table 5: Symptomy a jejich příčiny

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Příčina a nápravná akce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displej a LED diody nejsou zapnuté</td>
<td>Problemy v napájení přístroje. Zkontrolujte, zda napájení přístroje je připojeno do svorky 10 a 11. Ujistěte se, že napájení souhlasí s objednacím číslem: 9163-V0xxxx: 100 to 240 V AC/DC 9163-V1xxxx: 20 to 27 V AC/DC</td>
</tr>
</tbody>
</table>
Pokud jeden nebo více segmentů nesvítí, kontaktujte zákaznický servis Burster. |
| Pokud jedno nebo více segmentů displeje je mnoho zapnuté a nebo nesmyslné | Jeden nebo více segmentů displeje může mít mnoho zapnuté a nebo nesmyslné. Vypněte a znovu zapněte jednotku a zkontrolujte, zda jsou všechny segmenty rovnoměrně rozsvícené.
Pokud se objeví problém při prvním spuštění, je to pravděpodobné, že se v podcelku hardwarového nastavení nastavila nějaká parametr.
Jestliže se problém nezlepší a pokud parametr nesvítí v běhu hardwarového nastavení, je nutné nastavit parametr 19H4 na displeji v úrovni 1. (Propojka S9 na desce CPU povolí přístup pro nastavování parametrů.) |
| Pokud stisknu a držím tlačítko [F], neobjeví se menu nastavení. | Pro stisknutí a držení tlačítka [F] nemohu přistupovat ke všem menu a/nebo parametru je chráněno heslem.
Pokud se objeví problém při prvním spuštění, je to pravděpodobné, že se v podcelku hardwarového nastavení nastavila nějaká parametr.
Jestliže se problém nezlepší a pokud parametr nesvítí v běhu hardwarového nastavení, je nutné nastavit parametr 19H4 na displeji v úrovni 1. (Propojka S9 na desce CPU povolí přístup pro nastavování parametrů.) |
| Pro snímaní a výpočet podobně jako pro nastavení parametrů | Pro snímaní a výpočet podobně jako pro nastavení parametrů. Pokud je zkratován termočlánek, PV displej ukáže okolní teplotu přístroje jako vadný nebo není buzen. |
| Pro vstupní svorky jsou zkratovány. Pokud byl zkratován termočlánek, PV displej ukáže okolní teplotu v úrovni 1. (Propojka S9 na desce CPU povolí přístup pro nastavování parametrů.) |
| Pro vstupní svorky jsou zkratovány. Pokud byl zkratován termočlánek, PV displej ukáže okolní teplotu jako vadný nebo není buzen. |
| Místo ukazování aktuální hodnoty na PV displeji zobrazuje jednu z následujících zpráv: | V prvních řádcích případěch byla detekována chyba ve stupních signálech (viz sekc 3 pro více detailů).

Err:
Pro snímač Pt100:
Vstupní svorky jsou zkratovány. Pokud je zkratován termočlánek, PV displej ukáže okolní teplotu jako vadný nebo není buzen.

Ebr: tenzometr je vadný nebo není buzen.
EbrLo: není napájeti pro buzení snímače.

Er std: třetí vodič snímače Pt100 není připojen nebo je vadný.
13. Technické parametry

Jenom tyto hodnoty, funkce a rozsahy maní garantováno relativní nebo absolutní přesnost ve specifikované toleranci.

Table 6: Technické parametry digitálního zobrazovače

| Display | 1 x 5 číslic, dvoubar. (červená, zelená), výška znaků 13 mm
| | 1 x 2 číslic, červený, výška znaků 7 mm
	14 x červených LED
Tlačítko	6 mechanických tlačitek (Peak, CAL/RST, *, UP, DOWN, F)
Přesnost	0.1 % z hodnoty rozsahu ±1 digit při okolní teplotě 25 °C
Temperature drift	< 150 ppm/°C pro horní hodnotu rozsahu pro příslušné vstupy / napětí a tenzometry
Hlavní vstup, hlavní vstupy IN1, IN2	Tenzometrický směna: 350 Ω, citlivost 1.5...4 mV/V, s napájením místku 5/10 V DC ±5%
	Potenciometr: ≥ 100 Ω, Ri > 10 MΩ při 2.5 V DC
	DC linearní: ± 60mV, ± 100mV, ± 1V, ± 5V, ± 10V, Ri > 10MΩ
	0/4...20 mA, Ri = 50 Ω
	TC, RTD
	Interval vzorkování: 2 ms
Typ TC (termočlánkový) (ITS90)	J, K, R, S, T (IEC 584-1, CEI EN 60584-1,60584-2)
	Možnost linearizace (64 linearizačních kroků)
Kompenzační chyba	0.1° / °C
Type RTD (odporový směnač) (ITS90)	Pt100 (DIN43760),
Maximální odpor vodičů pro RTD	20 Ω
Typ PTC / Typ NTC	990 Ω, 25°C / 1 kΩ, 25°C
Spolehlivost	Detekce zkratu a vadného směnače, monitorování buzení směnačů, LBA limit
Pomoçné vstupy IN3, IN4	Potenciometr: 1...10 kΩ, při 10 Vdc
	DC lineární signály: 10 V, Ri > 2 MΩ
	0/4...20 mA, Ri = 50 Ω
	Interval vzorkování: 10 ms
Rozsah zobrazených čísel	-19 999...99 999, nastavitelná desetinná tečka
Limity výstupů s relé OUT 1, OUT 2, OUT 3, OUT 4	NO (NC) 5A, 250 V / 30 V DC
Limity výstupů s tranzistory OUT 1, OUT 2, OUT 3, OUT 4	24 Vdc, ≥ 18 V při 20 mA
	Ru = 390 Ω
Digitální výstupy D11, D12	Izolační napětí 1500 V, vzorkovací interval 60 ms, 24 V DC, 5 mA (PNP) nebo izolovaný kontakt (NPN) max. 5 mA. PNP/NPN volitelné podporuje konfigurační parametry
Typ analogového výstupu OUT W	Analogové, rozlišení lepší než 0.03 %, izolační napětí 1500 V, obnovovací interval 2 ms, synchronní se skenováním hodnot IN1 a IN2
	0/2...10 V, ±10 V max. 25 mA, zkratová ochrana
	0/4...20 mA, maximální zátěž 500 Ω
Horní limit nastavení	-100.0...100.0 %
Funkce stand-by	Zobrazování aktuální hodnoty zůstává aktivní
Nastavitelné limity	Až 4 limity mohou být přiřazeny k jednomu výstupu a nastaveny na: maximální hodnotu, minimální hodnotu, symetrické hodnoty, absolutní/relativní hodnoty, LBA pro AL1, AL2, vypočítávány každé 2 ms, synchronně se skenováním hodnot IN1 a IN2; pro AL3 a AL4, vypočítajte každé 2...4 ms v závislosti na počtu limitů
Speciální funkce pro limity	Možnost vypnutí při startu přístroje, limit zásobník, resetování přes klávesnici nebo/a kontakt
Buzení směnačů	5 V DC, 10 V DC pro tenzometry, max. 200 mA
	1, 2 V DC pro potenciometry ≥ 100 Ω
Buzení senzorů	24 V DC ±5 %, max. 200 mA
Sériové rozhraní RS232, RS485	Izolační napětí 1500 V
	Baud rate 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 bit/s
Protokol	MODBUS RTU
Napájecí napětí (rozdílné možnosti napájecího napětí)	(standard) 100...240 V AC/DC ±10 % (volitelné) 20...27 V AC/DC ±10 %
	50/60 Hz, max. 20 VA
	Chráněno vnitřní pojistkou, bez přístupu uživatele
Ochrana čelního panelu	IP54
Provozní/skladovací teploty	0...50 °C/-20...70 °C
Relativní vlhkost	20...85 % bez kondenzace
Pracovní prostředí	Pro použití v uzavřených místech do nadmořské výšky 2000 m
Instalace	Odstranitelný ze přední strany předního panelu pokud je instalován do panelu
Předpisy instalace	Instalační třída II, Stupeň znečištění 2, izolační třída II
Váha	450 g
14. Objednávací kódy, příslušenství a možnosti

Order Code

<table>
<thead>
<tr>
<th>Process value indicator model 9163-V</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Options:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Case and auxiliary supply</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Panel-mount unit 100 - 240 VAC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Panel-mount unit 20 - 27 VAC/VDC</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Analog output voltage</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>None</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 - 10 V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 - 20 mA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 - 20 mA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>±10 V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interface</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>None</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RS232</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RS485</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Profibus 1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Limit outputs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 x relay</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 x transistor (open e. p-switching)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Version</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 main channel / 2 sub-channels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 main channels / 2 auxiliary channels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Kabely převodníků a software je uveden na další stránce

Příslušenství pro Sensormaster 9163-V3xxx

- Kabelová redukce pro zdítko snímačů 1 nebo 2 pro tenzometrický snímač s napájením 5 VDC nebo 10 VDC a s konektorem 9900-V209.
- Kabelová redukce pro zdítku snímačů 1 nebo 2 pro senzor s buzením 15/24 VDC a s konektorem 9900-V209.
- Kabelová redukce pro zdítku snímačů 3/4 pro senzor s napájením 10VDC nebo potenciometr s napájením 5 VDC a s konektorem 99209-xxxx.
- Kabelová redukce pro zdítku snímačů 3/4 pro senzor s 15/24 VDC napájením s konektorem 9900-V209.

Software

Snadná konfigurace pomocí programu DigiVision a analyzační program pro 9163

Objednávací číslo

- Type 99209-609A-0090002
- Type 99209-609B-0090002
- Type 99208-609B-0090002
- Type 99208-609A-0090002
- Type 9163-P100
15. Přílohy

15.1 Možnosti menu

Table 7: Úroveň (Level) 1

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV / SU / F</td>
<td>PV LSW: 530 PV MSW: 531</td>
<td>-</td>
<td></td>
<td>Hlavní vstup IN1</td>
</tr>
<tr>
<td>l 1</td>
<td>LSW: 536 MSW: 537</td>
<td></td>
<td></td>
<td>Hlavní vstup IN2</td>
</tr>
<tr>
<td>l 2</td>
<td>LSW: 538 MSW: 539</td>
<td></td>
<td></td>
<td>Pomocný vstup IN3</td>
</tr>
<tr>
<td>l 3</td>
<td>LSW: 540 MSW: 541</td>
<td></td>
<td></td>
<td>Pomocný vstup IN4</td>
</tr>
<tr>
<td>l 4</td>
<td>LSW: 542 MSW: 543</td>
<td></td>
<td></td>
<td>Výsledek matematické funkce A</td>
</tr>
<tr>
<td>f m</td>
<td>LSW: 544 MSW: 545</td>
<td></td>
<td></td>
<td>Výsledek matematické funkce b</td>
</tr>
<tr>
<td>L 1</td>
<td>4 000 LSW: 554 MSW: 555</td>
<td></td>
<td></td>
<td>Limit 1</td>
</tr>
<tr>
<td>L 2</td>
<td>9 000 LSW: 556 MSW: 557</td>
<td></td>
<td></td>
<td>Limit 2</td>
</tr>
<tr>
<td>L 3</td>
<td>14 000 LSW: 558 MSW: 559</td>
<td></td>
<td></td>
<td>Limit 3</td>
</tr>
<tr>
<td>L 4</td>
<td>19 000 LSW: 560 MSW: 561</td>
<td></td>
<td></td>
<td>Limit 4</td>
</tr>
</tbody>
</table>

Table 8: Menu aF

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0d</td>
<td>1.33 a vyšší</td>
<td>581</td>
<td></td>
<td>Verze software</td>
</tr>
<tr>
<td>Cod</td>
<td>1</td>
<td>693</td>
<td></td>
<td>Číslo přístroje</td>
</tr>
<tr>
<td>Err. 1</td>
<td>0</td>
<td>582</td>
<td></td>
<td>Chybový kód pro IN1</td>
</tr>
<tr>
<td>Err. 2</td>
<td>0</td>
<td>583</td>
<td></td>
<td>Chybový kód pro IN2</td>
</tr>
<tr>
<td>Err. 3</td>
<td>0</td>
<td>584</td>
<td></td>
<td>Chybový kód pro IN3</td>
</tr>
<tr>
<td>Err. 4</td>
<td>0</td>
<td>585</td>
<td></td>
<td>Chybový kód pro F m A</td>
</tr>
<tr>
<td>dP5.5</td>
<td>-</td>
<td>1335</td>
<td></td>
<td>Pozice desetinné tečky F m A</td>
</tr>
<tr>
<td>dP5.6</td>
<td>-</td>
<td>1336</td>
<td></td>
<td>Pozice desetinné tečky F m b</td>
</tr>
<tr>
<td>Lo5.5</td>
<td>-</td>
<td>LSW: 1337 MSW: 1338</td>
<td>Dolní hodnota stupnice F m A (Jen pro čtení)</td>
<td></td>
</tr>
<tr>
<td>Lo5.6</td>
<td>-</td>
<td>LSW: 1339 MSW: 1340</td>
<td>Dolní hodnota stupnice F m b (Jen pro čtení)</td>
<td></td>
</tr>
<tr>
<td>H 5.5</td>
<td>-</td>
<td>LSW: 1341 MSW: 1342</td>
<td>Horní hodnota stupnice F m A (Jen pro čtení)</td>
<td></td>
</tr>
<tr>
<td>H 5.6</td>
<td>-</td>
<td>LSW: 1343 MSW: 1344</td>
<td>Horní hodnota stupnice F m b (Jen pro čtení)</td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Menu SEr

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cod</td>
<td>1</td>
<td>693</td>
<td></td>
<td>Číslo přístroje</td>
</tr>
<tr>
<td>bAv</td>
<td>4</td>
<td>694</td>
<td></td>
<td>Přenosová rychlost (Baud rate) pro sériovou komunikaci</td>
</tr>
<tr>
<td>PAv</td>
<td>0</td>
<td>695</td>
<td></td>
<td>Parita sériové komunikace</td>
</tr>
</tbody>
</table>
Table 10: Menu \(\text{NP.1}\)

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displej</td>
<td>15</td>
<td>696</td>
<td></td>
<td>Typ snímače nebo signálu pro IN1</td>
</tr>
<tr>
<td>Flt. 1</td>
<td>0,01</td>
<td>967</td>
<td></td>
<td>Digitální filtr vstup IN1</td>
</tr>
<tr>
<td>dPS. 1</td>
<td>20</td>
<td>698</td>
<td></td>
<td>Pozice desetinné tečky pro vstup IN1</td>
</tr>
<tr>
<td>Lo5. 1</td>
<td>-19 999</td>
<td>LSW: 699, MSW: 700</td>
<td>Dolní hodnota rozsahu, vstup IN1</td>
<td></td>
</tr>
<tr>
<td>Hi 5. 1</td>
<td>20 000</td>
<td>LSW: 701, MSW: 702</td>
<td>Horní hodnota rozsahu, vstup IN1</td>
<td></td>
</tr>
<tr>
<td>DfS. 1</td>
<td>0</td>
<td>703</td>
<td></td>
<td>Offset, vstup IN1</td>
</tr>
<tr>
<td>S6OF. 1</td>
<td>0,000</td>
<td>704</td>
<td></td>
<td>Offset, vstup IN1, kalibr. využív. 40 mV horní hodnotu rozsahu</td>
</tr>
<tr>
<td>S6SE. 1</td>
<td>3,000</td>
<td>705</td>
<td></td>
<td>Ctiivost, vstup IN1, kalibr. využív. 40 mV horní hodnotu rozsahu</td>
</tr>
</tbody>
</table>

Table 11: Menu \(\text{NP.2}\)

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displej</td>
<td>15</td>
<td>706</td>
<td></td>
<td>Typ snímače nebo signálu pro IN2</td>
</tr>
<tr>
<td>Flt. 2</td>
<td>0,01</td>
<td>707</td>
<td></td>
<td>Digitální filtr vstup IN2</td>
</tr>
<tr>
<td>dPS. 2</td>
<td>0</td>
<td>708</td>
<td></td>
<td>Pozice desetinné tečky pro vstup IN2</td>
</tr>
<tr>
<td>Lo5. 2</td>
<td>-3 000</td>
<td>LSW: 709, MSW: 710</td>
<td>Dolní hodnota rozsahu, vstup IN2</td>
<td></td>
</tr>
<tr>
<td>Hi 5. 2</td>
<td>3 000</td>
<td>LSW: 711, MSW: 712</td>
<td>Horní hodnota rozsahu, vstup IN2</td>
<td></td>
</tr>
<tr>
<td>DfS. 2</td>
<td>0</td>
<td>713</td>
<td></td>
<td>Offset, vstup IN2</td>
</tr>
<tr>
<td>S6OF. 2</td>
<td>0,000</td>
<td>714</td>
<td></td>
<td>Offset, vstup IN2, kalibr. využív. 40 mV horní hodnotu rozsahu</td>
</tr>
<tr>
<td>S6SE. 2</td>
<td>4,000</td>
<td>715</td>
<td></td>
<td>Ctiivost, vstup IN2, kalibr. využív. 40 mV horní hodnotu rozsahu</td>
</tr>
</tbody>
</table>

Table 12: Menu \(\text{NP.3}\)

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displej</td>
<td>1</td>
<td>716</td>
<td></td>
<td>Typ snímače nebo signálu pro IN3</td>
</tr>
<tr>
<td>Flt. 3</td>
<td>0,02</td>
<td>717</td>
<td></td>
<td>Digitální filtr vstup IN3</td>
</tr>
<tr>
<td>dPS. 3</td>
<td>3</td>
<td>718</td>
<td></td>
<td>Pozice desetinné tečky pro vstup IN3</td>
</tr>
<tr>
<td>Lo5. 3</td>
<td>0,00</td>
<td>LSW: 719, MSW: 720</td>
<td>Dolní hodnota rozsahu, vstup IN3</td>
<td></td>
</tr>
<tr>
<td>Hi 5. 3</td>
<td>100,00</td>
<td>LSW: 721, MSW: 722</td>
<td>Horní hodnota rozsahu, vstup IN3</td>
<td></td>
</tr>
<tr>
<td>DfS. 3</td>
<td>0,00</td>
<td>723</td>
<td></td>
<td>Offset, vstup IN3</td>
</tr>
</tbody>
</table>

Table 13: Menu \(\text{NP.4}\)

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displej</td>
<td>2</td>
<td>724</td>
<td></td>
<td>Typ snímače nebo signálu pro IN4</td>
</tr>
<tr>
<td>Flt. 4</td>
<td>0,02</td>
<td>725</td>
<td></td>
<td>Digitální filtr vstup IN4</td>
</tr>
<tr>
<td>dPS. 4</td>
<td>3</td>
<td>726</td>
<td></td>
<td>Pozice desetinné tečky pro vstup IN4</td>
</tr>
<tr>
<td>Lo5. 4</td>
<td>0,0</td>
<td>LSW: 727, MSW: 728</td>
<td>Dolní hodnota rozsahu, vstup IN4</td>
<td></td>
</tr>
<tr>
<td>Hi 5. 4</td>
<td>2 000,0</td>
<td>LSW: 729, MSW: 730</td>
<td>Horní hodnota rozsahu, vstup IN4</td>
<td></td>
</tr>
<tr>
<td>DfS. 4</td>
<td>0,0</td>
<td>731</td>
<td></td>
<td>Offset, vstup IN4</td>
</tr>
</tbody>
</table>
Table 14: Menu D.L

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar. 1</td>
<td>0</td>
<td>732</td>
<td>Reference pro Limit 1</td>
<td></td>
</tr>
<tr>
<td>Re. 1</td>
<td>0</td>
<td>733</td>
<td>Typ limitu 1</td>
<td></td>
</tr>
<tr>
<td>Hs. 1</td>
<td>-1</td>
<td>734</td>
<td>Hystereze pro limit 1</td>
<td></td>
</tr>
<tr>
<td>rR. 1</td>
<td>0</td>
<td>735</td>
<td>Aktivační čas limitu 1</td>
<td></td>
</tr>
<tr>
<td>bt. 1</td>
<td>0</td>
<td>736</td>
<td>Jednotka času pro aktivační čas pro limit 1</td>
<td></td>
</tr>
<tr>
<td>SdA. 1</td>
<td>0</td>
<td>1283</td>
<td>Znak A pro řetězec znaků pro limit 1</td>
<td></td>
</tr>
<tr>
<td>Sdb. 1</td>
<td>0</td>
<td>1284</td>
<td>Znak B pro řetězec znaků pro limit 1</td>
<td></td>
</tr>
<tr>
<td>Sdd. 1</td>
<td>0</td>
<td>1285</td>
<td>Znak C pro řetězec znaků pro limit 1</td>
<td></td>
</tr>
<tr>
<td>Sde. 1</td>
<td>0</td>
<td>1286</td>
<td>Znak D pro řetězec znaků pro limit 1</td>
<td></td>
</tr>
<tr>
<td>Ar. 2</td>
<td>0</td>
<td>737</td>
<td>Reference pro Limit 2</td>
<td></td>
</tr>
<tr>
<td>Re. 2</td>
<td>0</td>
<td>738</td>
<td>Typ limitu 2</td>
<td></td>
</tr>
<tr>
<td>Hs. 2</td>
<td>-1</td>
<td>739</td>
<td>Hystereze pro limit 2</td>
<td></td>
</tr>
<tr>
<td>rR. 2</td>
<td>0</td>
<td>740</td>
<td>Aktivační čas limitu 2</td>
<td></td>
</tr>
<tr>
<td>bt. 2</td>
<td>0</td>
<td>741</td>
<td>Jednotka času pro aktivační čas pro limit 2</td>
<td></td>
</tr>
<tr>
<td>SdA. 2</td>
<td>0</td>
<td>1288</td>
<td>Znak A pro řetězec znaků pro limit 2</td>
<td></td>
</tr>
<tr>
<td>Sdb. 2</td>
<td>0</td>
<td>1289</td>
<td>Znak B pro řetězec znaků pro limit 2</td>
<td></td>
</tr>
<tr>
<td>Sdc. 2</td>
<td>0</td>
<td>1290</td>
<td>Znak C pro řetězec znaků pro limit 2</td>
<td></td>
</tr>
<tr>
<td>Sdd. 2</td>
<td>0</td>
<td>1291</td>
<td>Znak D pro řetězec znaků pro limit 2</td>
<td></td>
</tr>
<tr>
<td>Sde. 2</td>
<td>0</td>
<td>1292</td>
<td>Znak E pro řetězec znaků pro limit 2</td>
<td></td>
</tr>
<tr>
<td>rR. 3</td>
<td>0</td>
<td>742</td>
<td>Reference pro Limit 3</td>
<td></td>
</tr>
<tr>
<td>bt. 3</td>
<td>0</td>
<td>743</td>
<td>Typ limitu 3</td>
<td></td>
</tr>
<tr>
<td>Hs. 3</td>
<td>-1</td>
<td>744</td>
<td>Hystereze pro limit 3</td>
<td></td>
</tr>
<tr>
<td>rR. 3</td>
<td>0</td>
<td>745</td>
<td>Aktivační čas limitu 3</td>
<td></td>
</tr>
<tr>
<td>SdA. 3</td>
<td>0</td>
<td>1293</td>
<td>Znak A pro řetězec znaků pro limit 3</td>
<td></td>
</tr>
<tr>
<td>Sdb. 3</td>
<td>0</td>
<td>1294</td>
<td>Znak B pro řetězec znaků pro limit 3</td>
<td></td>
</tr>
</tbody>
</table>

Table 15: Menu D.C

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SdC. 3</td>
<td>0</td>
<td>1295</td>
<td>Znak C pro řetězec znaků pro limit 3</td>
<td></td>
</tr>
<tr>
<td>Sdd. 3</td>
<td>0</td>
<td>1296</td>
<td>Znak D pro řetězec znaků pro limit 3</td>
<td></td>
</tr>
<tr>
<td>Sde. 3</td>
<td>0</td>
<td>1297</td>
<td>Znak E pro řetězec znaků pro limit 3</td>
<td></td>
</tr>
<tr>
<td>Ar. 4</td>
<td>0</td>
<td>747</td>
<td>Reference pro Limit 4</td>
<td></td>
</tr>
<tr>
<td>Re. 4</td>
<td>32</td>
<td>748</td>
<td>Typ limitu 4</td>
<td></td>
</tr>
<tr>
<td>Hs. 4</td>
<td>-1</td>
<td>749</td>
<td>Hystereze pro limit 4</td>
<td></td>
</tr>
<tr>
<td>rR. 4</td>
<td>0</td>
<td>750</td>
<td>Aktivační čas limitu 4</td>
<td></td>
</tr>
<tr>
<td>bt. 4</td>
<td>0</td>
<td>751</td>
<td>Jednotka času pro aktivační čas pro limit 4</td>
<td></td>
</tr>
<tr>
<td>SdA. 4</td>
<td>0</td>
<td>1298</td>
<td>Znak A pro řetězec znaků pro limit 4</td>
<td></td>
</tr>
<tr>
<td>Sdb. 4</td>
<td>0</td>
<td>1299</td>
<td>Znak B pro řetězec znaků pro limit 4</td>
<td></td>
</tr>
<tr>
<td>Sdd. 4</td>
<td>0</td>
<td>1300</td>
<td>Znak C pro řetězec znaků pro limit 4</td>
<td></td>
</tr>
<tr>
<td>Sde. 4</td>
<td>0</td>
<td>1301</td>
<td>Znak D pro řetězec znaků pro limit 4</td>
<td></td>
</tr>
<tr>
<td>rR. 2</td>
<td>0</td>
<td>741</td>
<td>Reference pro Limit 2</td>
<td></td>
</tr>
<tr>
<td>bt. 2</td>
<td>0</td>
<td>736</td>
<td>Jednotka času pro aktivační čas pro limit 2</td>
<td></td>
</tr>
<tr>
<td>SdA. 2</td>
<td>0</td>
<td>1288</td>
<td>Znak A pro řetězec znaků pro limit 2</td>
<td></td>
</tr>
<tr>
<td>Sdb. 2</td>
<td>0</td>
<td>1289</td>
<td>Znak B pro řetězec znaků pro limit 2</td>
<td></td>
</tr>
<tr>
<td>Sdc. 2</td>
<td>0</td>
<td>1290</td>
<td>Znak C pro řetězec znaků pro limit 2</td>
<td></td>
</tr>
<tr>
<td>Sdd. 2</td>
<td>0</td>
<td>1291</td>
<td>Znak D pro řetězec znaků pro limit 2</td>
<td></td>
</tr>
<tr>
<td>Sde. 2</td>
<td>0</td>
<td>1292</td>
<td>Znak E pro řetězec znaků pro limit 2</td>
<td></td>
</tr>
<tr>
<td>rR. 3</td>
<td>0</td>
<td>742</td>
<td>Reference pro Limit 3</td>
<td></td>
</tr>
<tr>
<td>bt. 3</td>
<td>0</td>
<td>743</td>
<td>Typ limitu 3</td>
<td></td>
</tr>
<tr>
<td>Hs. 3</td>
<td>-1</td>
<td>744</td>
<td>Hystereze pro limit 3</td>
<td></td>
</tr>
<tr>
<td>rR. 3</td>
<td>0</td>
<td>745</td>
<td>Aktivační čas limitu 3</td>
<td></td>
</tr>
<tr>
<td>SdA. 3</td>
<td>0</td>
<td>1293</td>
<td>Znak A pro řetězec znaků pro limit 3</td>
<td></td>
</tr>
<tr>
<td>Sdb. 3</td>
<td>0</td>
<td>1294</td>
<td>Znak B pro řetězec znaků pro limit 3</td>
<td></td>
</tr>
</tbody>
</table>

Table 16: Menu D.C

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>rL. 1</td>
<td>1</td>
<td>787</td>
<td>Výběr hodnoty napájení snímačů pro výstup, OUT1</td>
<td></td>
</tr>
<tr>
<td>rL. 2</td>
<td>2</td>
<td>789</td>
<td>Reference pro výstup, OUT2</td>
<td></td>
</tr>
<tr>
<td>rL. 3</td>
<td>3</td>
<td>791</td>
<td>Reference pro výstup, OUT3</td>
<td></td>
</tr>
<tr>
<td>rL. 4</td>
<td>4</td>
<td>793</td>
<td>Reference pro výstup, OUT4</td>
<td></td>
</tr>
<tr>
<td>typ.P.An</td>
<td>5</td>
<td>799</td>
<td>Typ analogového výstupu W</td>
<td></td>
</tr>
<tr>
<td>rL.F.An</td>
<td>0</td>
<td>800</td>
<td>Reference, výstup W</td>
<td></td>
</tr>
<tr>
<td>Lo.An</td>
<td>-19 999</td>
<td>LSW: 801</td>
<td>Dolní hodnota stupnice, Výstup W</td>
<td></td>
</tr>
<tr>
<td>W.An</td>
<td>20 000</td>
<td>MSW: 803</td>
<td>Horní hodnota stupnice, Výstup W</td>
<td></td>
</tr>
<tr>
<td>rL.5</td>
<td>1</td>
<td>807</td>
<td>Výběr hodnoty napájení snímače</td>
<td></td>
</tr>
</tbody>
</table>
Table 16: Menu PRS

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRS</td>
<td>0</td>
<td></td>
<td></td>
<td>Heslo</td>
</tr>
<tr>
<td>Pro</td>
<td>0</td>
<td>49</td>
<td></td>
<td>Ochranný kód</td>
</tr>
</tbody>
</table>

Table 17: Menu Hř.d

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd. 1</td>
<td>0</td>
<td>809</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Func. A</td>
<td>0</td>
<td>815</td>
<td></td>
<td>Matematická funkce A</td>
</tr>
<tr>
<td>In 1. A</td>
<td>0</td>
<td>816</td>
<td></td>
<td>První operand funkce Func. A</td>
</tr>
<tr>
<td>In 2. A</td>
<td>0</td>
<td>817</td>
<td></td>
<td>Druhý operand funkce Func. A</td>
</tr>
<tr>
<td>DPE. A</td>
<td>0</td>
<td>818</td>
<td></td>
<td>Operátor funkce Func. A</td>
</tr>
<tr>
<td>C 1. A</td>
<td>0,00</td>
<td>819</td>
<td></td>
<td>Koeficient C 1. A</td>
</tr>
<tr>
<td>C 2. A</td>
<td>0</td>
<td>820</td>
<td></td>
<td>Koeficient C 2. A</td>
</tr>
<tr>
<td>C 3. A</td>
<td>0,00</td>
<td>821</td>
<td></td>
<td>Koeficient C 3. A</td>
</tr>
<tr>
<td>C 4. A</td>
<td>0</td>
<td>822</td>
<td></td>
<td>Koeficient C 4. A</td>
</tr>
<tr>
<td>C 5. A</td>
<td>0,00</td>
<td>823</td>
<td></td>
<td>Koeficient C 5. A</td>
</tr>
<tr>
<td>Func. b</td>
<td>0</td>
<td>824</td>
<td></td>
<td>Matematická funkce b</td>
</tr>
<tr>
<td>In 1. b</td>
<td>0</td>
<td>825</td>
<td></td>
<td>První operand funkce Func. b</td>
</tr>
<tr>
<td>In 2. b</td>
<td>0</td>
<td>826</td>
<td></td>
<td>Druhý operand funkce Func. b</td>
</tr>
<tr>
<td>DPE. b</td>
<td>0</td>
<td>827</td>
<td></td>
<td>Operátor funkce Func. b</td>
</tr>
<tr>
<td>C 1. b</td>
<td>0,00</td>
<td>828</td>
<td></td>
<td>Koeficient C 1. b</td>
</tr>
<tr>
<td>C 2. b</td>
<td>0</td>
<td>829</td>
<td></td>
<td>Koeficient C 2. b</td>
</tr>
<tr>
<td>C 3. b</td>
<td>0,00</td>
<td>830</td>
<td></td>
<td>Koeficient C 3. b</td>
</tr>
<tr>
<td>C 4. b</td>
<td>0</td>
<td>831</td>
<td></td>
<td>Koeficient C 4. b</td>
</tr>
<tr>
<td>C 5. b</td>
<td>0,00</td>
<td>832</td>
<td></td>
<td>Koeficient C 5. b</td>
</tr>
<tr>
<td>AL. n</td>
<td>4</td>
<td>834</td>
<td></td>
<td>Počet aktivních limitů</td>
</tr>
<tr>
<td>but. 1</td>
<td>8</td>
<td>835</td>
<td></td>
<td>[PEAK] funkce tlačítka</td>
</tr>
<tr>
<td>but. 2</td>
<td>11</td>
<td>836</td>
<td></td>
<td>[CAL/RST] funkce tlačítka</td>
</tr>
</tbody>
</table>

Table 18: Menu L.in

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>MOD bus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>kIP.L.</td>
<td>1</td>
<td>858</td>
<td></td>
<td>Typ linearizace</td>
</tr>
<tr>
<td>SteEP.n</td>
<td>4</td>
<td>859</td>
<td></td>
<td>Počet intervalů</td>
</tr>
<tr>
<td>S.00</td>
<td>0</td>
<td>LSW: 860 MSW: 861</td>
<td>Bod 0, hodnota přiřazena dolní mezi stupnice (krok 0)</td>
<td></td>
</tr>
<tr>
<td>S.0 L.A</td>
<td>2 500</td>
<td>LSW: 862 MSW: 863</td>
<td>Bod 1, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 1)</td>
<td></td>
</tr>
<tr>
<td>S.0 L.b</td>
<td>5 000</td>
<td>LSW: 864 MSW: 865</td>
<td>Hodnota přiřazena k bodu 1 (krok 2)</td>
<td></td>
</tr>
<tr>
<td>S.02 .A</td>
<td>5 000</td>
<td>LSW: 866 MSW: 867</td>
<td>Bod 2, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 3)</td>
<td></td>
</tr>
<tr>
<td>S.02 .b</td>
<td>10 000</td>
<td>LSW: 868 MSW: 869</td>
<td>Hodnota přiřazena k bodu 2 (krok 4)</td>
<td></td>
</tr>
<tr>
<td>Displej</td>
<td>Defaultní hodnota</td>
<td>CONF</td>
<td>Profibus</td>
<td>Popis</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>5.03_a</td>
<td>7 500</td>
<td></td>
<td>LSW: 870 MSW: 871</td>
<td>Bod 3, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 5)</td>
</tr>
<tr>
<td>5.03_b</td>
<td>15 000</td>
<td></td>
<td>LSW: 872 MSW: 873</td>
<td>Hodnota přiřazena k bodu 3 (krok 6)</td>
</tr>
<tr>
<td>5.04_a</td>
<td>9 999</td>
<td></td>
<td>LSW: 874 MSW: 875</td>
<td>Bod 4, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 7)</td>
</tr>
<tr>
<td>5.04_b</td>
<td>20 000</td>
<td></td>
<td>LSW: 876 MSW: 877</td>
<td>Hodnota přiřazena k bodu 4 (krok 8)</td>
</tr>
<tr>
<td>5.05_a</td>
<td>0</td>
<td></td>
<td>LSW: 878 MSW: 879</td>
<td>Bod 5, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 9)</td>
</tr>
<tr>
<td>5.05_b</td>
<td>0</td>
<td></td>
<td>LSW: 880 MSW: 881</td>
<td>Hodnota přiřazena k bodu 5 (krok 10)</td>
</tr>
<tr>
<td>5.06_a</td>
<td>0</td>
<td></td>
<td>LSW: 882 MSW: 883</td>
<td>Bod 6, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 11)</td>
</tr>
<tr>
<td>5.06_b</td>
<td>0</td>
<td></td>
<td>LSW: 884 MSW: 885</td>
<td>Hodnota přiřazena k bodu 6 (krok 12)</td>
</tr>
<tr>
<td>5.07_a</td>
<td>0</td>
<td></td>
<td>LSW: 886 MSW: 887</td>
<td>Bod 7, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 13)</td>
</tr>
<tr>
<td>5.07_b</td>
<td>0</td>
<td></td>
<td>LSW: 888 MSW: 889</td>
<td>Hodnota přiřazena k bodu 7 (krok 14)</td>
</tr>
<tr>
<td>5.08_a</td>
<td>0</td>
<td></td>
<td>LSW: 890 MSW: 891</td>
<td>Bod 8, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 15)</td>
</tr>
<tr>
<td>5.08_b</td>
<td>0</td>
<td></td>
<td>LSW: 892 MSW: 893</td>
<td>Hodnota přiřazena k bodu 8 (krok 16)</td>
</tr>
<tr>
<td>5.09_a</td>
<td>0</td>
<td></td>
<td>LSW: 894 MSW: 895</td>
<td>Bod 9, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 17)</td>
</tr>
<tr>
<td>5.09_b</td>
<td>0</td>
<td></td>
<td>LSW: 896 MSW: 897</td>
<td>Hodnota přiřazena k bodu 9 (krok 18)</td>
</tr>
<tr>
<td>5.10_a</td>
<td>0</td>
<td></td>
<td>LSW: 898 MSW: 899</td>
<td>Bod 10, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 19)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>Profibus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10_b</td>
<td>0</td>
<td></td>
<td>LSW: 900 MSW: 901</td>
<td>Hodnota přiřazena k bodu 10 (krok 20)</td>
</tr>
<tr>
<td>5.11_a</td>
<td>0</td>
<td></td>
<td>LSW: 902 MSW: 903</td>
<td>Bod 11, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 21)</td>
</tr>
<tr>
<td>5.11_b</td>
<td>0</td>
<td></td>
<td>LSW: 904 MSW: 905</td>
<td>Hodnota přiřazena k bodu 11 (krok 22)</td>
</tr>
<tr>
<td>5.12_a</td>
<td>0</td>
<td></td>
<td>LSW: 906 MSW: 907</td>
<td>Bod 12, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 23)</td>
</tr>
<tr>
<td>5.12_b</td>
<td>0</td>
<td></td>
<td>LSW: 908 MSW: 909</td>
<td>Hodnota přiřazena k bodu 12 (krok 24)</td>
</tr>
<tr>
<td>5.13_a</td>
<td>0</td>
<td></td>
<td>LSW: 910 MSW: 911</td>
<td>Bod 13, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 25)</td>
</tr>
<tr>
<td>5.13_b</td>
<td>0</td>
<td></td>
<td>LSW: 912 MSW: 913</td>
<td>Hodnota přiřazena k bodu 13 (krok 26)</td>
</tr>
<tr>
<td>5.14_a</td>
<td>0</td>
<td></td>
<td>LSW: 914 MSW: 915</td>
<td>Bod 14, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 27)</td>
</tr>
<tr>
<td>5.14_b</td>
<td>0</td>
<td></td>
<td>LSW: 916 MSW: 917</td>
<td>Hodnota přiřazena k bodu 14 (krok 28)</td>
</tr>
<tr>
<td>5.15_a</td>
<td>0</td>
<td></td>
<td>LSW: 918 MSW: 919</td>
<td>Bod 15, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 29)</td>
</tr>
<tr>
<td>5.15_b</td>
<td>0</td>
<td></td>
<td>LSW: 920 MSW: 921</td>
<td>Hodnota přiřazena k bodu 15 (krok 30)</td>
</tr>
<tr>
<td>5.16_a</td>
<td>0</td>
<td></td>
<td>LSW: 922 MSW: 923</td>
<td>Bod 16, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 31)</td>
</tr>
<tr>
<td>5.16_b</td>
<td>0</td>
<td></td>
<td>LSW: 924 MSW: 925</td>
<td>Hodnota přiřazena k bodu 16 (krok 32)</td>
</tr>
<tr>
<td>5.17_a</td>
<td>0</td>
<td></td>
<td>LSW: 926 MSW: 927</td>
<td>Bod 17, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 33)</td>
</tr>
<tr>
<td>5.17_b</td>
<td>0</td>
<td></td>
<td>LSW: 928 MSW: 929</td>
<td>Hodnota přiřazena k bodu 17 (krok 34)</td>
</tr>
</tbody>
</table>
Digital měřidlo

Model 9163

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>Profibus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.18.A</td>
<td>0</td>
<td>LSW: 930</td>
<td>MSW: 931</td>
<td>Bod 18 vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 35)</td>
</tr>
<tr>
<td>5.18.b</td>
<td>0</td>
<td>LSW: 932</td>
<td>MSW: 933</td>
<td>Hodnota přiřazena k bodu 18 (krok 36)</td>
</tr>
<tr>
<td>5.19.A</td>
<td>0</td>
<td>LSW: 934</td>
<td>MSW: 935</td>
<td>Bod 19 vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 37)</td>
</tr>
<tr>
<td>5.19.b</td>
<td>0</td>
<td>LSW: 936</td>
<td>MSW: 937</td>
<td>Hodnota přiřazena k bodu 19 (krok 38)</td>
</tr>
<tr>
<td>5.20.A</td>
<td>0</td>
<td>LSW: 938</td>
<td>MSW: 939</td>
<td>Bod 20 vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 39)</td>
</tr>
<tr>
<td>5.20.b</td>
<td>0</td>
<td>LSW: 940</td>
<td>MSW: 941</td>
<td>Hodnota přiřazena k bodu 20 (krok 40)</td>
</tr>
<tr>
<td>5.21.A</td>
<td>0</td>
<td>LSW: 942</td>
<td>MSW: 943</td>
<td>Bod 21, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 41)</td>
</tr>
<tr>
<td>5.21.b</td>
<td>0</td>
<td>LSW: 944</td>
<td>MSW: 945</td>
<td>Hodnota přiřazena k bodu 21 (krok 42)</td>
</tr>
<tr>
<td>5.22.A</td>
<td>0</td>
<td>LSW: 946</td>
<td>MSW: 947</td>
<td>Bod 22, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 43)</td>
</tr>
<tr>
<td>5.22.b</td>
<td>0</td>
<td>LSW: 948</td>
<td>MSW: 949</td>
<td>Hodnota přiřazena k bodu 22 (krok 44)</td>
</tr>
<tr>
<td>5.23.A</td>
<td>0</td>
<td>LSW: 950</td>
<td>MSW: 951</td>
<td>Bod 23, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 45)</td>
</tr>
<tr>
<td>5.23.b</td>
<td>0</td>
<td>LSW: 952</td>
<td>MSW: 953</td>
<td>Hodnota přiřazena k bodu 23 (krok 46)</td>
</tr>
<tr>
<td>5.24.b</td>
<td>0</td>
<td>LSW: 956</td>
<td>MSW: 957</td>
<td>Hodnota přiřazena k bodu 24 (krok 48)</td>
</tr>
<tr>
<td>5.25.A</td>
<td>0</td>
<td>LSW: 958</td>
<td>MSW: 959</td>
<td>Bod 25, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 49)</td>
</tr>
</tbody>
</table>

Digital měřidlo

Model 9163

<table>
<thead>
<tr>
<th>Displej</th>
<th>Defaultní hodnota</th>
<th>CONF</th>
<th>Profibus</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.25.b</td>
<td>0</td>
<td>LSW: 960</td>
<td>MSW: 961</td>
<td>Hodnota přiřazena k bodu 25 (krok 50)</td>
</tr>
<tr>
<td>5.26.A</td>
<td>0</td>
<td>LSW: 962</td>
<td>MSW: 963</td>
<td>Bod 26, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 51)</td>
</tr>
<tr>
<td>5.26.b</td>
<td>0</td>
<td>LSW: 964</td>
<td>MSW: 965</td>
<td>Hodnota přiřazena k bodu 26 (krok 52)</td>
</tr>
<tr>
<td>5.27.A</td>
<td>0</td>
<td>LSW: 966</td>
<td>MSW: 967</td>
<td>Bod 27, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 53)</td>
</tr>
<tr>
<td>5.27.b</td>
<td>0</td>
<td>LSW: 968</td>
<td>MSW: 969</td>
<td>Hodnota přiřazena k bodu 27 (krok 54)</td>
</tr>
<tr>
<td>5.28.A</td>
<td>0</td>
<td>LSW: 970</td>
<td>MSW: 971</td>
<td>Bod 28, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 55)</td>
</tr>
<tr>
<td>5.28.b</td>
<td>0</td>
<td>LSW: 972</td>
<td>MSW: 973</td>
<td>Hodnota přiřazena k bodu 28 (krok 56)</td>
</tr>
<tr>
<td>5.29.A</td>
<td>0</td>
<td>LSW: 974</td>
<td>MSW: 975</td>
<td>Bod 29, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 57)</td>
</tr>
<tr>
<td>5.29.b</td>
<td>0</td>
<td>LSW: 976</td>
<td>MSW: 977</td>
<td>Hodnota přiřazena k bodu 29 (krok 58)</td>
</tr>
<tr>
<td>5.30.A</td>
<td>0</td>
<td>LSW: 978</td>
<td>MSW: 979</td>
<td>Bod 30, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 59)</td>
</tr>
<tr>
<td>5.30.b</td>
<td>0</td>
<td>LSW: 980</td>
<td>MSW: 981</td>
<td>Hodnota přiřazena k bodu 30 (krok 60)</td>
</tr>
<tr>
<td>5.31.A</td>
<td>0</td>
<td>LSW: 982</td>
<td>MSW: 983</td>
<td>Bod 31, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 61)</td>
</tr>
<tr>
<td>5.31.b</td>
<td>0</td>
<td>LSW: 984</td>
<td>MSW: 985</td>
<td>Hodnota přiřazena k bodu 31 (krok 62)</td>
</tr>
<tr>
<td>5.32.A</td>
<td>0</td>
<td>LSW: 986</td>
<td>MSW: 987</td>
<td>Bod 32, vstupní hodnota [1/10,000] horní hodnoty stupnice. (krok 63)</td>
</tr>
<tr>
<td>5.32.b</td>
<td>0</td>
<td>LSW: 988</td>
<td>MSW: 989</td>
<td>Hodnota přiřazena k bodu 32 (krok 64)</td>
</tr>
</tbody>
</table>
Model 9163

<table>
<thead>
<tr>
<th>Šetření</th>
<th>Wert</th>
<th>Limit</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>990</td>
<td></td>
<td></td>
<td>krok mV dolního limitu stupnice - pouze pro zakázkový TC</td>
</tr>
<tr>
<td>991</td>
<td></td>
<td></td>
<td>krok mV horního limitu stupnice - pouze pro zakázkový TC</td>
</tr>
<tr>
<td>992</td>
<td></td>
<td></td>
<td>krok mV pro teplotu 50°C - pouze pro zakázkový TC</td>
</tr>
</tbody>
</table>

15.2 Blokové schéma

![Blokové schéma Model 9163](image-url)
15.3 Funkční blokové schémata

Strana 151/156

Strana 152/156
Model 9163

Digital měřidlo

Analógový výstup

Typ: An

Hodnota: An

Kontrola: An

Rozkaz: An

Limit 1

Limit 2

Limit 3

Limit 4

Pramen: An

Hodnota: An

Pramen: An

Pra...
Digital měřidlo

Model 9163

![Diagram of Model 9163](image)

OUT1, ..., OUT 4

- NO/NC Relais 5 A
- 250 VAC / 30 VDC

Logic
- 30 mA,
- Rmin = 390 Ω

Analog output
- 0/2 ... 10 V
- 0/4 ... 20 mA
- ± 10 V