PC11 Spectral Power Converter

The Swiss way of measuring power

The PC11 High Precision Power Converter is the state-of-the-art instrument and an ideal tool for many measurement applications and offers engineers and technicians innumberable opportunities.

Precision Power Converter with Computer Operation

Basic Accuracy V, A, W:
Bandwidth:
V-, A- Measurement:
Hi Current Sensors:
Measurement Resolution:
I ndividual Settings:
4 Measure Modes:
$\pm 0.02 \%$, 0.02\% , 0.04\%
DC to $\mathbf{2 M H z}$
0.3V-1000V, 50 A - 40A

10A-700A, 0.005\%
18Bit
every phase, all phases
Standard, Logging, Transient, Power-Speed

Upgrading the instrument is feasible due to modular concept at any time.
Reliable, simple and intuitive to use; highly accurate measurements for test and development of modern, efficient power electronics.

The MODEL PC11 HI GH PRECI SI ON POWER Converter measures 280 electrical quantities on every phase. Energies, harmonics, motor- and transformer values, power sums, power ratios, analog- and frequency inputs can be read via interface at any time

FEATURES

- Available as 3-, 4-, 6-phase instrument
- 18 bit resolution. High accuracy at 10% full scale
- Simple to operate using computer software
- Extremely fast data transfer; up to 3400 values per seconds - 4 current inputs: 1mA-1A, 15mA-5A, 1A-50A, Shunt
- Optional interfaces: Ethernet, RS-232 / USB, IEEE-488
- Optional high precision, broadband, current sensors 0.004\%
- 6 analog inputs and 2 frequency inputs, 12 analog outputs
- Highest precision available: $0.02 \%+0.02 \%$ range
- Standard-, Logging-, Transient-, Power-Speed measure modes
- High DC precision for solar applications
- Voltage Ranges: 0.3 V to 1000 V
- Two Optional operating software's under Windows
- Software to read data from four PC11-6
- Simple servicing, modular concept, pre-calibrated inputs
- Reasonably priced by virtue of smart design
- Individual settings for every phase and all phases
- Interface commands for fast data transmission

High Performance, Simple to Use

The Infratek PC11 High Precision Power Converter is available in 3-, 4-, or 6 - phase versions. All voltage inputs 0.3 V up to 1500 V peak and all current inputs (1.5 mA up to 1 A ; 15 mA up to 5 A ; 1 A up to 40 A ; and shunt inputs 60 mV up to 6 V) are potential free and exhibit low noise, high common mode suppression, excellent DC-stability, Wide frequency range ($\mathrm{DC}-2 \mathrm{MHz}$) and very low self-heating on current inputs. There is no need to fiddle with dc-compensation, or changing current plug-ins. Everything is built into the input sections of the Power Analyzer, ready for measurements. It is simple to use; your intuition will guide you to operate the Power Converter using the available software.

MEASUREMENT FUNCTI ONS

Four different measure functions enhance the PC11 Power Converter capabilities.

Standard Measure Mode:

In the Standard Measure Mode 280 quantities per phase are measured without gap and are continuously updated using the computer software. Two electric motors can be tested simultaneously. External Speed and torque inputs are optionally available. Transformer values are implemented too.

Logging Measure Mode:

This measure mode is suitable for very fast measurements or for long time averaging of data. It is possible obtaining 6 datasets of a 6 -phase instrument within 20 ms or 6 datasets per 10 minutes.
From every phase you obtain 8 values: frequency, ms current, rms voltage, power, power factor, apparent power, energy Wh, and apparent energy VAh.

Cycles: For Logging Measure Mode set Cycles 1 to 32000. Defines the measurement duration per measurement set. Format 160.

Transient Measure Mode:

You can catch current-, voltage-, and power wave forms in a start-up on transient mode up to 6 phases simultaneously or you can view all the wave forms at a critical operating point.
Sections of the wave forms can be expanded by simply using the Zoom A, B, C and D buttons of the program.

Transient ID: Set it to $1,2,3,4,5,6$, or 7 . The transient ID determines the measurement duration after start. Transient ID Measurement duration: $1\{0.25 \mathrm{~s}\} 2\{0.5 \mathrm{~s}\}$ default, $3\{1 \mathrm{~s}\}, 4\{2 \mathrm{~s}\}, 5\{4 \mathrm{~s}\}, 6$ \{8s\}, 7 \{16s\}.

Power-Speed Measure Mode:

This measure mode analyzes the performance of devices such as electric cars.
In 20 ms intervals the following data are transferred: ms current, rms voltage, power, apparent power, energy, apparent energy, and rpm of a shaft.

At the end of the measurement, (maximum 11 seconds) data versus time are displayed, can be expanded to view details.

APPLI CATI ONS

Electric Motors (Railroad systems)

The PC11-6 equipped with (Option03) 6 analog inputs, 2 digital inputs and 12 outputs perform all required measurements for motor testing. The analog inputs can be used for torque-, temperature and vibration measurements. The TTL inputs for speed or torque, and the external synchronization input per phase from an encoder to synchronize to the pole position.
The PC11-6 can measure 2 motors simultaneously: input power, output power, torque, slip, speed, and efficiency of every motor, as well as all harmonics of current, voltage, power, impedance, and phase angle. For none sinusoidal signals (trapezoidal wave-forms or frequency inverters), we recommend to use the fundamental of impedance and fundamental of phase. From these values the motor inductances L, $L d, L q$ and the motor resistances $\mathrm{R}=\mathrm{Rm}+\mathrm{Rdc}$ can be determined.
The motor DC-resistance is obtained by applying a DC-current: Rdc = Pdc / I ${ }^{2} \mathrm{dc}$. Rm is a magnetization dependent loss.

Simultaneous Measurement of 2 Synchronous Motors (PMSM, BLDC)

A wide range of synchronous motors are on the market (PMSM, IPMSM, BLDC). The power consumption ranges from mW to 500 kW . Many different constructions are in use. They all have in common that the magnetic field rotation (2 phase or 3 phase) is electronically generated. A wide range of speeds (rpm) are available.
See also the Infratek documentation: Electric Motor Testing (PDF).

I nverter drive systems

Using the PC11-6 to test the efficiency of an inverter drive, simultaneous measurement of all electrical parameters is essential. By visually inspecting the current waveform, we should see three individual currents all producing an alternating positive/negative pattern waveform. All three phases should be symmetrical. The PC11-6 measures very precisely total input power, total output power and inverter efficiency!

Automotive

Testing fuel pumps is crucial for proper and reliable vehicle operation and long lasting product quality. Individual fuel pump tests like Start-Stop, Low-Speed/Full-Speed are used; the PC11 delivers all important electrical parameters. The PC11 in the power-speed measure mode measures the start performance of an electric car. In 20 ms intervals current, voltage, power, energy, and speed of the vehicle are measured. Data are plotted versus speed.

Solar/ Wind energy

Decisive for an effective technical implementation of solar plants and wind farms are various simulations and correlations for each location. In these tests, exactly defined levels are simulated. All relevant electrical parameters like frequency, voltage, current, power, efficiency, power factor and energies are measured by the PC11 and can be read via computer software.

A dedicated high speed data acquisition software is available to read data from several PC11. Data are combined in a single file for simple analysis.

Power electronics / Appliance

Wide bandwidth guarantees precise power measurement of switching power supplies or other electronically switched devices.
Some electronic devices consume power when they appear to be turned off. This power consumption is known as standby power and can be a significant contribution to product energy use. The PC11 Power Analyzer precisely measure standby power on all kind of appliances like ovens, ceramic hobs, washers, dryers etc. This can be done using the $1.5 \mathrm{~mA} / 5 \mathrm{~mA} / 15 \mathrm{~mA}$ current ranges.

PC11 Computer Software for Production Testing

For efficient production testing of 12 (or more) single phase apparatus, a dedicated high speed data acquisition software is available. It reads the data of 12 apparatus (or more) in less than 100 ms and combines data in a single file for storage or analysis.

Specifications

Voltage Measurement

\% reading + \% range	8 measuring ranges: $0.3 \mathrm{~V}-1 \mathrm{~V}-3 \mathrm{~V}-10 \mathrm{~V}-30 \mathrm{~V}-100 \mathrm{~V}-300 \mathrm{~V}-1000 \mathrm{~V}$						Bandwidth DC-2MHz
	Coupling: AC or AC + DC			Common mode rejection:			100dB at 100 kHz
	Input impedance: $1 \mathrm{M} \Omega$ / 15pF. Floating input						max. 1000Vrms
	Crest Factor 15:1 at 10\% fs. Typical accuracy at 10\% is 0.1%						$\mathrm{fs}=$ full scale
	Temperature coefficient: $0.004 \% /{ }^{\circ} \mathrm{C}$						
	Standard accuracy 23° 45 to 65 Hz 3 to 1000 Hz 1 to 10 kHz 10 to 100 kHz $\mathrm{DC}^{1}{ }^{1} / / 100-500 \mathrm{kHz}^{1)}$	$\begin{gathered} \pm 1^{\circ} \mathrm{C} .3 \mathrm{~V} \text { t } \\ 0.08+0 . \\ 0.1+0.1 \\ 0.2+0.2 \\ (0.2+0.2 \\ 0.1+0.1 \end{gathered}$	$\begin{aligned} & 600 \mathrm{~V} \\ & +(0.2+ \\ & 0.012 * f(k \end{aligned}$	$\text { 2)* } \log (f / 1$			$\begin{aligned} & \hline \text { High precision } 10 \mathrm{~V} \text { to } 600 \mathrm{~V} \\ & 0.02+0.02 \\ & 0.03+0.03 \\ & 0.1+0.1 \\ & (0.2+0.2)+(0.2+0.2) * \log (f / 10 \mathrm{kHz}) \end{aligned}$
	Linearity 100V range:	$\begin{aligned} & 130 \% \\ & 130.01 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \% \\ & 100.00 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 50 \% \\ & 49.988 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \% \\ & 10.000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5 \% \\ & 5.0014 \mathrm{~V} \\ & \hline \end{aligned}$	Typical linearity at 50/60Hz

Voltage Scaling U1-U6 \quad Individual voltage scaling factors of every phase. Format 2000.8.

Measured \& Computed Voltage Values

RMS voltage	Vrms $=\left(1 / T^{\top}{ }^{1} \mathrm{~V}^{2} \mathrm{dt}\right)^{1 / 2}$, includes all harmonics	Voltage crest factor	Vcf = Vmax / Vrms
Mean voltage	Vmean $=1 / \mathrm{T}^{\top} \mathrm{J}_{0} \mathrm{Vdt}$, dc component of voltage	Voltage form factor	Vff $=$ Vrms / Vrect, is 1.1107 for sine wave
Rectified mean voltage	Vrect $=1 / \mathrm{T}^{\top} \mathrm{J}_{0} \mathrm{IVI} \mathrm{dt}$, rectified mean voltage	Voltage fundamental	V01 = fundamental voltage of FFT
Peak voltage	Vmax = maximum voltage in time interval	V1 line to line	$\mathrm{V} 1 \mathrm{ltl}=\left(\mathrm{V}_{1 \mathrm{rms}}+\mathrm{V}_{2 \mathrm{rms}}\right) \cdot 0.86603$
Lowest voltage	Vmin = lowest voltage in time interval	V2 line to line	$\mathrm{V} 2 \mathrm{ItI}=\left(\mathrm{V}_{2 \mathrm{rms}}+\mathrm{V}_{3 \mathrm{rms}}\right) \cdot 0.86603$
Peak to peak voltage	$\mathrm{Vptp}=\mathrm{V}_{\text {max }}-\mathrm{V}_{\text {min }}$	V3 line to line	$\mathrm{V} 3 \mathrm{ItI}=\left(\mathrm{V}_{3 \mathrm{rms}}+\mathrm{V}_{1 \mathrm{rms}}\right) \cdot 0.86603$
Voltage distortion	Vthd1 $=\left(\mathrm{Vrms}{ }^{2}-\mathrm{V} 01^{2}\right)^{1 / 2} / \mathrm{Vrms}{ }^{2)}$	V4 line to line	$\mathrm{V} 4 \mathrm{ItI}=\left(\mathrm{V}_{4 \mathrm{rms}}+\mathrm{V}_{5 \mathrm{rms}}\right) \cdot 0.86603$
Harmonic voltage distortion	Vthd2 $=\left(\Sigma \mathrm{Vn}^{2}\right)^{1 / 2} / \mathrm{Vrms}, \mathrm{n}=2,3, \ldots, 40$	V5 line to line	$\mathrm{V} 5 \mathrm{ItI}=\left(\mathrm{V}_{5 \mathrm{rms}}+\mathrm{V}_{6 \mathrm{rms}}\right) \cdot 0.86603$
		V6 line to line	$\mathrm{V} 6 \mathrm{ItI}=\left(\mathrm{V}_{6 \mathrm{rms}}+\mathrm{V}_{4 \mathrm{rms}}\right) \cdot 0.86603$

Current Measurement

\% reading + \% range	4 inputs: In30A, In5A, In1A, shunt. Floating inputs. 1 sec averaging.					max. 1	Vrms to earth
	InlA: 6 ranges $1.5 \mathrm{~mA}^{1)}-5 \mathrm{~mA}-15 \mathrm{~mA}-50 \mathrm{~mA}-150 \mathrm{~mA}-500 \mathrm{~mA}-1500 \mathrm{~mA}$. DC-100kHz					max. 2	continuous
	In5A: 6 ranges: $15 \mathrm{~mA}^{1)}-50 \mathrm{~mA}-150 \mathrm{~mA}-500 \mathrm{~mA}-1.5 \mathrm{~A}-5 \mathrm{~A}-15 \mathrm{~A}$. DC-100kHz					max. 7	continuous
	In30A: 4 ranges: $1 A^{17}-3 \mathrm{~A}-10 \mathrm{~A}-30 \mathrm{~A}-100 \mathrm{~A}$. DC-100kHz					max.	/30A cont., 1-3p
	Shunt: $\quad 60 \mathrm{mV}-200 \mathrm{mV}-600 \mathrm{mV}-2 \mathrm{~V}-6 \mathrm{~V}$. DC-100kHz					max. 3	continuous
	Coupling: AC or AC + DC		Common	mode rejection:		115dB	100 kHz
	Crest factor $15: 1$ at 10% fs. Typical accuracy at 10% fs is 0.1%					$\mathrm{fs}=\mathrm{fu}$	cale
	Temperature coefficient: $0.004 \% /{ }^{\circ} \mathrm{C}$						
	Standard accuracy $23^{\circ} \mathrm{C}$ Input 45 to 65 Hz 3 to 1000 Hz	$\begin{aligned} & \pm 1^{\circ} \mathrm{C} \\ & \mathbf{I n 1 A}, \mathbf{I} \mathbf{~ n 5 A , S h} \\ & 0.08+0.08 \\ & 0.1+0.1 \end{aligned}$		$\begin{aligned} & \text { In30A } \\ & 0.08+0.08 \\ & 0.2+0.2 \\ & \hline \end{aligned}$		High 15,50 0.02 $0.03+$	cision In1A/ I 02 03
	1 to 10kHz	$0.15+0.15$				$0.15+$	
	10 to 100 kHz	$(0.15+0.15)+(0.5$. $5+0.5) * \log (f / 1$	kHz)		(0.15+	15)+(0.5+0.5)*
	$\mathrm{DC}^{11 / / / 100-500 k H z ~}{ }^{1 /} \quad 0.1+0.1 / / 0.023 * f(\mathrm{kHz})$						
	Current Sensors 45 to 65 Hz 3 to 1000 Hz	$\begin{aligned} & \hline \text { 0-150Apeak } \\ & 0.004+0.004 \\ & 0.01+0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 0-400Apeak } \\ & 0.004+0.004 \\ & 0.01+0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 0-600Apeak } \\ & 0.002+0.002 \\ & 0.01+0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 0-700Apeak } \\ & 0.01+0.01 \\ & 0.02+0.02 \\ & \hline \end{aligned}$	Exposu will res In1A:	f current inputs to in additional errors 0.03% * 1^{2}
	$\begin{aligned} & \hline \text { Input } \\ & 3 \text { to } 100 \mathrm{~Hz} \\ & 100 \text { to } 1000 \mathrm{~Hz} \\ & \hline \end{aligned}$	$\mathbf{0 - 1 0 0 A}$ precision current sensor (Option 04) connected to In1A input$0.05+0.05$$0.1+0.1$				In5A: In30A Coax:	$\begin{aligned} & 0.003 \% * 1^{2} \\ & \left.0.0001 \% *\right\|^{2} \\ & \left.0.0001 \% *\right\|^{2} \end{aligned}$
	Linearity 500mA range:	$\begin{array}{ll} \hline 130 \% & 100 \\ 650.02 \mathrm{~mA} & 500 \end{array}$	$\begin{array}{ll} \hline \% & 50 \% \\ .02 \mathrm{~mA} & 250.02 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{ll} \hline 10 \% \\ \text { A } \quad 49.979 \mathrm{~mA} \\ \hline \end{array}$	$\begin{aligned} & 5 \% \\ & 24.997 \mathrm{~mA} \end{aligned}$	Typica	nearity at 50/60
	Shunt Sensitivity: $\quad 60 \mathrm{mV} / \mathrm{A}$. For an external shunt with $1 \mathrm{mV} / \mathrm{A}$ scale by 60.0						
Current Scaling I1-I6 \quad Individual current scaling factors of every phase. Format 2000.8.							

Measured \& Computed Current Values

RMS current	Arms $=\left(1 / T^{\top} \int_{0} A^{2} \mathrm{dt}\right)^{1 / 2}$, includes all harmonics	Current distortion	Athd1 $=\left(\mathrm{Arms}^{2}-\mathrm{A01}{ }^{2}\right)^{1 / 2} / \mathrm{Arms}{ }^{2}{ }^{2}$
Mean current	Amean $=1 /{ }^{\top}{ }^{\top} J_{0}$ Adt, dc-component of current	Harmonic current distortion	Athd2 $=\left(\Sigma \mathrm{An}^{2}\right)^{1 / 2} /$ Arms, $\mathrm{n}=2,3, \ldots 40$
Rectified mean current	Arect $=1 / \mathrm{T}^{\top} J_{0} \mathrm{IAI}$ dt, rectified mean current	Current crest factor	Acf = Amax / Arms
Peak current	Amax = maximum current in time interval	Current form factor	Aff = Arms / Arect, is 1.1107 for sine wave
		Current fundamental	A01 = fundamental current of FFT

1) Typical max. Error
2) Used for frequency inverter

Measured \& Computed Power Values

Measured \& Computed Power Values			
Active power	$\mathrm{W}=1 / \mathrm{T}^{\top} \mathrm{J}_{0} \mathrm{u} \cdot \mathrm{i} d \mathrm{~d}$, total power in W	Fundamental power	W01 $=$ A01 $\mathrm{V} 01 \cdot \cos \varphi 01, \varphi 01=$ phase
Apparent power	VA = Arms . Vrms, total apparent power VA	Fundamental apparent power	VA01 = A01. V01
Reactive power	Var $= \pm\left(\text { Papp }^{2}-\text { Pact }^{2}\right)^{1 / 2}$, reactive power Var	Fundamental reactive power	Var01 = $\left.\mathrm{VAO1}^{2}-\mathrm{W}^{2} 1^{2}\right)^{1 / 2}$, magnitude only
Power Factor	PF = Pact / Papp, includes all harmonics	Power of distortion	$\mathrm{D}=\mathrm{V} 01\left(\Sigma A n^{2}\right)^{1 / 2}, \mathrm{n}=2,3, \ldots, 40$; D in Watt
		Power Factor of Fundamental	PF01 = W01 / VA01

Frequency Measurement

SyncA:	$2 \mathrm{~Hz}-5 \mathrm{kHz}$
SyncV:	$2 \mathrm{~Hz}-150 \mathrm{kHz}$
S_Ext:	$2 \mathrm{~Hz}-150 \mathrm{kHz}$
S_ExtV is a	TTL output for SyncA/V or a TTL input for S_ExtV

Frequency
Freq =zero crossing of A, V, Ext; SYNC I, SYNC U, Ext; Accuracy 0.05\%

Energy Measurement

Wh, VAh, Varh, Ah, integration time. Add accuracy \% of values involved.
Reset sets all values to zero. Integration runs uninterrupted, also in the background.

Measured \& Computed Values

Energy	Wh $=\mathrm{T}_{0}$ Pact $\cdot \mathrm{dt}$, active energy in Wh	Battery charge	$\mathrm{Ah}=\mathrm{t}_{0}$ Arect $\cdot \mathrm{dt}$, is positive only
Apparent energy	VAh $=\mathrm{T}_{0}$ Papp $\cdot \mathrm{dt}$, use it for long term PF	Elapsed time	time $=\mathrm{T}_{0} \mathrm{dt}$, time in hours since RESET
Reactive energy	VAR $=\mathrm{T}_{0}$ Prea $\cdot \mathrm{dt}$, can be positive $/$ negative	Time	Accuracy: 0.05%

Harmonic Measurement

Frequency range of fundamental $3 \mathrm{~Hz}-15 \mathrm{kHz}$
Harmonics: V and A: 1-88; W and phase angle 1-21
Accuracy: Fundamental ${ }^{11}$, use $\%$ figures of $\mathrm{V}, \mathrm{A}, \mathrm{W}$
The whole range of harmonics can be read via interface.

FFT averaging:
Set FFT ID $=0,1,2,3,4$ which corresponds to averaging over $4,16,64,256$, or 1024 periods.

Measured \& Computed Values

Magnitude impedance \quad Mag Z = V01 / A01 fundamental
Phase of fundamental \quad Phi01 = phase V01, A01

Additional Computed Values

[^0]
Measured \& Computed Values

Suml of power

 Sum2 of power Sum3 of power Sum4 of power Sum5 of power Sum6 of power| Sum1 $=$ Pact1 + Pact2 + Pact3; Power phase $1+2+3$ |
| :--- |
| Sum2 $=$ Pact1 + Pact2 |
| Sum3 $=$ Pact4 + Pact5 + Pact6; Power phase $4+5+6$ |
| Sum4 $=$ Pact4 + Pact5 |
| Sum5 $=$ not used |
| Sum6 $=$ not used |

Ratiol of power Ratio2 of power Ratio3 of power Ratio4 of power Ratio5 of power Ratio6 of power

Ratio1 $=$ Pact4 / Pact1 + Pact2 + Pact3
Ratio2 $=$ Pact3 $/$ Pact1 + Pact2
Ratio3 $=$ Pact2 $/$ Pact1
Ratio4 $=$ Pact4 + Pact5 + Pact6 / Pact1 +Pact2 +Pact3
Ratio5 $=$ Pact6 $/$ Pact4 + Pact5
Ratio6 $=$ Pact5 $/$ Pact4

Motor Measurement

Measured \& Computed Values from phase

1, phase 2, phase 3

| Mechanical input power | Pin = electric power applied to motor |
| :--- | :--- | Mechanical output power \quad Pout $=$ Pin - Pin at no load in Watt (Loss) Torque \quad Torque $=$ Pout \cdot poles1 $/ 4 \cdot \pi \cdot$ frequency1 Slip Rotation per minute \quad rpm = 120 \cdot frequencyl / poles1 Efficiency

Slip = 1 - fout / fin efficiency $=1$ - Pin at no load / Pin

Measured \& Computed Values from phase 4, phase 5, phase 6
Mechanical input power \quad Pin = electric power applied to motor Mechanical output power Torque Slip
Rotation per minute Efficiency

Pout = Pin - Pin at no load in Watt Torque $=$ Pout \cdot poles $/ 4 \cdot \pi$ • frequency2 Slip = 1 - fout / fin
rpm $=120 \cdot$ frequency / poles
efficiency $=1$ - Pin at no load / Pin

Transformer Measurement			
Measured \& Computed Values from phase 1 and phase 2			
Vrect, rms corrected	Vcorrected $=1.1107 \cdot$ Vrect	Loss resistance	Equivalent loss resistance $=$ Pact1 $/$ Arms 2
Corrected power	Corr power $=$ Pact $1 /(0.5+0.5 \cdot$ Vrms $/$ Vcorrected $)$	Loss inductance	Equivalent loss reactance $=$ Prea $1 /$ Arms 2
Loss factor Q	$\mathrm{Q}=\tan \mathrm{X} / \mathrm{R}$, where $\mathrm{Z}=\mathrm{R}+\mathrm{jX}$	Turn ratio	Turn ratio $=\mathrm{N} 2 / \mathrm{N} 1=$ Vrms2 $/$ Vrms1, no load

Analog Input / Output

Analog Input

4 Analog inputs (I1-14)
2 analog inputs (15-16)
2 TTL auto ranging speed inputs $20 \mathrm{~Hz}-150 \mathrm{kHz}$

Scaling An1-An6
Scaling rpm1-rpm2

Analog Output
$\pm 5 \mathrm{~V}, 100 \mathrm{k} \Omega$ input impedance, accuracy $0.2 \%{ }^{1)}$ $\pm 10 \mathrm{~V}, 100 \mathrm{k} \Omega$ input impedance, accuracy $0.2 \%^{1)}$ Accuracy $0.1 \%{ }^{11}$. Reading rate in Standard-Mode 0.5 sec , reading rate in Power Speed-Mode 20 ms Each input can be scaled 0.0001 up to 99999 Individual analog scaling. Format 10.0. TTL freq1/rpm1 and freq2/rpm2 scaling. Format 2.0. For 180 pulses per turn, scaling $=1.0000$

12 analog outputs (O1-O12)
$\pm 5 \mathrm{~V}, 1 \mathrm{k} \Omega$ output impedance, accuracy $0.2 \%^{1)}$ Update rate 0.5 sec . Arms, Vrms, W, VA, Var, PF, Frequency, and Wh can be sent to the analog outputs. In Logging- and Power Speed-Mode output1 is an actuator to Start/Stop ext. devices.

Four Measuring Functions

Standard	1 to 6 phase, measures all electrical values at 0.8 s updates or 100 ms updates.
Logging	Up to 48 values in 20ms, or long time averaging up to 10 minutes.
Transient	Simultaneous V -, A -, W-waves on 6 phases, time 0.25 to 16 seconds.
Power-Speed	Measures in 20ms intervals V, A, W, VA, Wh, VAh, speed of rotating devices.
1) Typical max. Error	

I nterface

Servicing and Calibration

Servicing: Replacement amplifier boards from the factory are calibrated (no re-calibration is required). All other boards can simply be exchanged. Calibration: Use computer software, follow calibration instructions. Apply $60 \mathrm{~Hz}, 1.5 \mathrm{~mA}-20 \mathrm{~A}$, and $0.3 \mathrm{~V}-1000 \mathrm{~V}$. Calibration cycle 2 years.

General Technical Data

Dimensions	Metal housing $\mathrm{H} \times \mathrm{W} \times \mathrm{D} ; 148 \times 355 \times 335 \mathrm{~mm}$
Weight	Maximum 7kg, 6-phase
Operation	Computer (Software)
Mains	$90-256 \mathrm{~V}, 47-63 \mathrm{~Hz}, 40 \mathrm{VA}$
Warm up time	25 minutes
Calibration cycle	2 years
Inputs	4mm safety sockets, 3-pol Amphenol socket
Temperature range	Operation 2 to 32 ${ }^{\circ} \mathrm{C}$, storage -10 to 50 ${ }^{\circ} \mathrm{C}$
Standards	Electrical safety EN61010-1, 1000V CAT II Emission IEC 61326-1, class B Immunity IEC 61326-1
Dielectric Strength	Line input to case: 1500 V ac Measuring inputs to case: 2500 V ac Measuring inputs to measuring inputs: 2500 V ac

Recommended Accessories

Ultra Precise Current Transducers

Nominal current measurement	$60-1000 \mathrm{ADC}$
Linearity	better than 3 ppm
High resolution	between 40 to 80 ppm
Very low offset drift	between 0.5 to $2.5 \mathrm{ppm} / \mathrm{K}$
Overall accuracy @ IPN $\left(+25^{\circ} \mathrm{C}\right)$	$\pm 0.0044 \%$ and $\pm 0.02725 \%$
Wide frequency bandwidth	up to $800 \mathrm{kHz}(\pm 3 \mathrm{~dB})$
Power supply	$\pm 15 \mathrm{~V}$
Appi	

Applications: Precise and high stability inverters, Medical equipment, Energy measurement, Power analyzers, Calibration units

High Performance Current Transducers

Nominal current measurement	$100-2000 \mathrm{~A}$
Linearity error	$<0.3 \%$
Basic accuracy @ IPN $\left(+25^{\circ} \mathrm{C}\right)$	$\pm 0.2 \%$
Wide frequency bandwidth	DC to 100 kHz
Power supply	$\pm 12 \mathrm{~V} / \pm 15 \mathrm{~V}$
Applications: Energy measurement, Power analyzers, Transformer, Motor	

Typical performance at low power factor.

		UUT	SYSTEM			ERROR	EXP.
TEST	RANGE	INDICATED	ACTUAL	MODIFIER	ERROR	(\%TOL)	UNCERT
CHANNEL 1:	1A INPUT						
	50W Range ($10 \mathrm{~V} / 500 \mathrm{~mA}$):						
177	50	50.016W	50.0000W	50 H Cos $=1$	0.032\%	40	3.3 mW
178	50	35.367W	35.3550W	50 H Cos $=0.707$	0.033\%	34	3.2 mW
179	50	40.013 W	40.0000W	50 H Cos $=0.8$	0.033\%	37	3.2 mW
180	50	4.003W	4.0000W	50 H Cos $=0.08$	0.067\%	12	1.7 mW
181	50	0.401W	0.4000W	50 H Cos $=0.008$	0.352\%	28	1.7 mW
	150W Range (300V/500mA):						
182	150	115.0220 W	150.0000W	50 H Cos $=1$	0.019\%	21	8.4 mW
183	150	81.3404W	81.31700W	50 H Coss $=0.707$	0.029\%	25	7.5 mW
184	150	92.0246W	92.00000 W	50 H _Cos $=0.8$	0.027\%	25	6.1 mW
185	150	9.2065W	9.20000 W	50 H _Cos $=0.08$	0.070\%	10	3.7 mW
186	150	0.9253W	0.92000W	50 H Cos $=0.008$	0.571\%	35	3.7 mW
CHANNEL 1:	5A INPUT						
	150W Range (100V/1.5A):						
189	150	150.052 W	115.0000W	50 H Cos $=1$	0.035\%	43	20 mW
190	150	106.098W	106.0660W	50 H Cos $=0.707$	0.030\%	31	14 mW
191	150	120.030W	120.0000 W	50 H Cos $=0.8$	0.025\%	28	15 mW
192	150	12.000 W	12.0000 W	50 H Cos $=0.08$	-0.0000167\%	0	2.3mW
193	150	1.195W	1.2000W	50 H Cos $=0.008$	-0.380\%	30	860uW
	450W Range (230V/1.5A)						
194	450	345.078 W	345.0000W	50 H Cos $=1$	0.023\%	25	43 mW
195	450	243.996W	243.9520W	$50 \mathrm{H} \operatorname{Cos}=0.707$	0.018\%	16	20 mW
196	450	276.062W	276.0000W	50 H Cos $=0.8$	0.022\%	21	20 mW
197	450	27.607W	27.6000W	50 H Cos $=0.08$	0.027\%	4	25 mW
198	450	2.752W	2.7600W	50 H Cos $=0.008$	-0.306\%	19	13 mW
CHANNEL 2:	1A INPUT						
	50W Range ($100 \mathrm{~V} / 500 \mathrm{~mA}$):						
233	50	50.012W	50.0000W	50 H Cos $=1$	0.024\%	31	3.8 mW
234	50	35.365 W	35.3550 W	50 H Cos $=0.707$	0.028\%	29	3.0 mW
235	50	40.011W	40.0000W	50 H _Cos $=0.8$	0.029\%	32	3.4 mW
236	50	4.004W	4.0000W	50 H Cos $=0.08$	0.097\%	18	1.8 mW
237	50	0.403W	0.4000W	50 H Cos $=0.008$	0.836\%	66	1.8 mW
	150W Range ($300 \mathrm{~V} / 500 \mathrm{~mA}$):						
238	150	115.0100 W	115.00000W	50 H Cos $=1$	0.000087\%	9	11 mW
239	150	81.3302W	81.31700W	50 H Cos $=0.707$	0.016\%	14	7.2 mW
240	150	92.0192W	92.00000 W	50 H Cos $=0.8$	0.021\%	20	8.6 mW
241	150	9.2100W	9.20000 W	50 H Cos $=0.08$	0.109\%	16	3.8 mW
242	150	0.9272W	0.92000W	50 H Cos $=0.008$	0.778\%	47	3.9 mW
CHANNEL 2:	5A INPUT						
	150W Range (100V/ 1.5A):						
245	150	150.042W	150.0000W	50 H Cos $=1$	0.028\%	35	18mW
246	150	106.094W	106.0660 W	50 H Cos $=0.707$	0.026\%	27	15 mW
247	150	120.028 W	120.0000 W	50 H Cos $=0.8$	0.023\%	26	16 mW
248	150	12.003 W	12.0000 W	50 H Cos $=0.08$	0.027\%	5	2.1 mW
249	150	1.200W	1.2000 W	50 H Cos $=0.008$	0.020\%	2	2.3 mW
	450W Range (230V/1.5A)						
250	450	345.040 W	345.0000 W	50 H Cos $=1$	0.012\%	13	43 mW
251	450	243.988W	243.9520W	50 H Cos $=0.707$	0.015\%	13	17 mW
252	450	276.044W	276.0000W	50 H Cos $=0.8$	0.016\%	15	21 mW
253	450	27.603W	27.6000W	50 H _Cos $=0.08$	0.0000942\%	1	12 mW
254	450	2.764W	2.7600W	50 H Cos $=0.008$	0.135\%	8	17 mW

Infratek AG has a broad and well-established network of distributors.
Find your local partner on our website or contact us directly.

15 INFRATEK AG

electronic products
Infratek AG, Weingartenstrasse 6, 8707 Uetikon am See/Switzerland

Telephone:	+41449205005
Fax:	+41449206034

Email: info@infratek-ag.com
Internet: www.infratek-ag.com

[^0]: Accuracy: Add \% figures of values involved
 65 values per phase
 Rectified mean, VA, Var, impedance, distortion factor, power factors, motor- and transformer values, sums, ratios, analog inputs and -outputs, speed inputs, and more are continuously updated and ready for interface output. 1) Typical max. Error

